Articles
Güncel Sayı
Geçmiş Sayılar
Özel Sayılar
YTU Sigma
ÇOKLU-ODAKLI GÖRÜNTÜLERİN GENETİK ALGORİTMA KULLANILARAK BİRLEŞTİRİLMESİ
Makale Adı
ÇOKLU-ODAKLI GÖRÜNTÜLERİN GENETİK ALGORİTMA KULLANILARAK BİRLEŞTİRİLMESİ
Yazarlar
Veysel ASLANTAŞ, Ahmet Nusret TOPRAK, Rifat KURBAN, Emre BENDEŞ
Anahtar kelimeler
Görüntü birleştirme
,
genetik algoritma
,
sınırlı alan derinliği.
Makale Özeti
Görüntü birleştirme, bilgisayarla görme ve görüntü işleme sahasında büyük öneme sahip bir konu olarak öne çıkmaktadır. Aynı çevrenin görüntülendiği, farklı optik parametrelerle elde edilmiş çoklu-odaklı görüntüler birleştirilerek oluşturulan tamamı net görüntüler, birçok endüstriyel ve bilimsel sahada uygulama alanı bulmaktadır. Bu çalışmada resim uzayı tabanlı yeni bir çoklu-odaklı görüntü birleştirme yöntemi önerilmektedir. Önerilen yöntemde öncelikle, genetik algoritmaya dayalı bir teknik kullanılarak, çoklu-odaklı görüntülerde oluşan bulanık bölgelere ait nokta dağılım fonksiyonları saptanır. Daha sonra, elde edilen nokta dağılım fonksiyonları kullanılarak kaynak görüntüler bulanıklaştırılır. Son aşamada, kaynak görüntüleri ve bulanıklaştırılan yapay görüntüleri kullanan bir karar mekanizması yardımıyla tespit edilen kaynak görüntülerdeki net piksellerin taşınmasıyla tamamı net bir sonuç görüntü üretilir. Ayrıca, önerilen yöntem literatürde tanımlanmış klasik yöntemlerle sayısal ve görsel olarak karşılaştırılmıştır. Elde edilen sonuçlar önerilen yöntemin üstünlüğünü ortaya koymaktadır.
English Keywords
Multi-focus image fusion , genetic algorithm , depth of field.
Article Summary in English
In applications of imaging systems, one major problem is limited depth of field which results in blurring parts of the captured image. However, in many areas such as microscopic imaging, industrial machine vision and surveillance applications, images that have large depth of field are preferred. In this paper, a novel multi-focus image fusion method is presented. The method, firstly, calculates optical transfer function of blurred parts located on source images by using a technique based on genetic algorithm. Then source images are artificially blurred by employing obtained transfer functions and sharp pixels of sources images are detected by using artificially blurred and source images. Eventually, sharp pixels of source images are transferred to build everywhere-in-focus fused image. Furthermore, proposed method and classical methods are compared in terms of quantitative and visual evaluation. According to the results of evaluations, proposed method outperforms classic methods.
Makale Dosyası İndir
Makale Tam Metni
Sigma Dergisi
Title
Yazar
Özet
Articles
Snowman
Super Mario Games
Ball Games
Gold Miner
Cutting Game
redball
Blue Ball
Mobile Games
Clown
Webmaster
Games like
gold miner games
and game for mobile
gamikro games
to people around the world.