

2004/1

ON THE GENERALIZATION OF CARTESIAN PRODUCT OF FUZZY SUBGROUPS AND IDEALS

Bayram Ali ERSOY^{*}

Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Davutpaşa-ISTANBUL,

Geliş /Received: 30.10.2002 Kabul/Accepted: 03.03.2004

BULANIK ALT GRUPLARIN VE İDEALLERİN KARTEZYEN ÇARPIMLARININ GENELLEŞTİRİLMESİ

ÖZET

Bu çalışmada Malik ve Mordeson'un makalesi genelleştirildi. Yani farklı grupların (halkaların) bulanık alt gruplarının (bulanık ideallerinin) kartezyen çarpımları incelendi. G_1 ve G_2 boştan farklı iki grup olmak üzere eğer \mathbf{m}_1 ve \mathbf{m}_2 G_1 ve G_2 (\mathbf{R}_1 ve \mathbf{R}_2 birimli olmak zorunda olmayan değişmeli iki halka olmak üzere) nin bulanık alt grupları(bulanık idealleri) ise kartezyen çarpımları $\mathbf{m}_1 \times \mathbf{m}_2$ da $G_1 \times G_2$ ($\mathbf{R}_1 \times \mathbf{R}_2$) nin bulanık alt grubudur (bulanık idealleri). Yukarıdaki ifadesinin ters yönleri de çalışılmıştır. Bu ifadeleri n farklı grup (halka) için de genelleştirilmiştir. Anahtar Sözcükler: Bulanık alt küme, Bulanık Alt grup, Seviye alt grubu, Bulanık ideal, Seviye ideali,

Anahtar Sozcukler: Bulanik alt kume, Bulanik Alt grup, Seviye alt grubu, Bulanik ideal, Seviye ideali, Bulanik bağıntı, Kartezyen çarpım

ABSTRACT

In this work I generalize Malik and Mordeson's paper [3]. I analysis the cartesian product of fuzzy subgroups (ideals) of two groups (two commutative rings Rings which have not necessarily identity element). That is; if m and s are fuzzy subgroups (ideals) of G_1 and G_2 (R_1 and R_2) respectively then $m \times s$ is a fuzzy

subgroup (ideal) of $G_1 \times G_2$ ($R_1 \times R_2$). Conversely the opposite direction of the above statements is studied. We generalize the above statements for *n* different Groups (Rings).

Keywords: Fuzzy subset, Fuzzy subgroup, Level subgroup, Fuzzy ideal, Level ideal, Fuzzy relation, Cartesian product

1. INTRODUCTION

The concept of a fuzzy subset was introduced by Zadeh[5]. Fuzzy subgroup and its important properties were defined and established by Rosenfeld[2]. Then many authors have studied about it. After this time it was necessary to define fuzzy ideal of a ring. The notion of a fuzzy ideal of a ring was introduced by Liu [1]. Malik, Mordeson and Mukherjee have studied fuzzy ideals. The

^{*} e-mail: <u>ersoya@yildiz.edu.tr</u> ; tel: (0212)449 1780

concept of a fuzzy relation on a set was introduced by Zadeh[6]. Bhattacharya and Mukherjee have studied fuzzy relation on groups. Malik and Mordeson [3] studied fuzzy relation on rings. Moreover Malik and Mordeson have written very important book for Fuzzy algebra which is "Fuzzy Commutative Algebra"[4].

In this paper G_i (i = 1, 2, ..., n) is a group and R_i (i = 1, 2, ..., n) is a commutative ring. A fuzzy relation on R is the fuzzy subset of $R \times R$. In our paper the cartesian product of two sets G_1 and G_2 (R_1 and R_2) is defined like that:

 $\forall (a_1,b_1), (a_2,b_2) \in G_1 \times G_2 \left(R_1 \times R_2 \right) \ (a_1,b_1) + (a_2,b_2) \right) = (a_1 + a_2,b_1 + b_2) \; ,$

 $(a_1,b_1).(a_2,b_2) = (a_1a_2,b_2b_2)$. I generalize Malik and Mordeson's paper. That is; if m_1,m_2 are fuzzy subgroups (ideals) of G_1 and G_2 (R_1 and R_2) respectively then $m_1 \times m_2$ is a fuzzy subgroup (ideal) of $G_1 \times G_2$ ($R_1 \times R_2$). Let $\mathbf{m}_1, \mathbf{m}_2$ be fuzzy subsets of G_1, G_2 respectively such that $\mathbf{m}_1 \times \mathbf{m}_2$ is a fuzzy subgroup (ideal) of $G_1 \times G_2$ ($R_1 \times R_2$). Then \mathbf{m}_1 or \mathbf{m}_2 is fuzzy subgroup (ideal) of G_1 or $G_2(R_1 \text{ or } R_2)$ respectively. Let \mathbf{m}_1 and \mathbf{m}_2 be fuzzy subsets of R such that $\mathbf{m}_1 \times \mathbf{m}_2$ is a fuzzy subgroup (ideal) of $G_1 \times G_2$ ($R_1 \times R_2$). If $\forall x \in G_1, \forall y \in G_2$ $\boldsymbol{m}_{1}(\boldsymbol{e}_{1}) = \boldsymbol{m}_{2}(\boldsymbol{e}_{2}),$ $m_1(x) \le m_1(e_1)$ and $m_2(y) \le m_2(e_2)$ ($\forall x \in R_1, \forall y \in R_2$) $m_1(0_1) = m_2(0_2),$ $m_1(x) \le m_1(0_1)$ and $m_2(y) \le m_2(0_2)$ then both m_1 and m_2 are fuzzy subgroups (ideals) of G_1 and G_2 (R_1 and R_2). Also I extend these above theorems for n different Groups (Rings). That is if $m_1, m_2, m_3, ..., m_n$ are fuzzy subgroups (ideals) of $G_1, G_2, ..., G_n$ ($R_1, R_2, ..., R_n$) respectively , then $\mathbf{m}_1 \times \mathbf{m}_2 \times \mathbf{m}_3 \times \ldots \times \mathbf{m}_n$ is fuzzy subgroup (ideal) of $G_1 \times G_2 \times ... \times G_n$ ($R_1, R_2, ..., R_n$). Then I prove the opposite direction of the previous statement under some conditions.

2. PRELIMINARIES

In this section, we review some basic definitions and results.

Definition 2.1: A fuzzy subset of non empty set S is a function $m: S \rightarrow [0,1]$.

Definition 2.2: A fuzzy subset m of a group G is called a fuzzy subgroup of G if (i) $m(xy) \ge \min(m(x), m(y))$

(ii) for all $x, y \in G$ $m(x^{-1}) \ge m(x)$.

If **m** is a fuzzy subgroup of G then $m(x^{-1}) = m(x)$ for all $x \in G$.

Definition 2.3: If *m* is a fuzzy subset of *S*, then for any $t \in \text{Im } m$, the set $m_t = \{x \in S | m(x) \ge t\}$ is called the level subset of *S* with respect to *m*.

Theorem 2.4 ([1]): Let m be fuzzy subset of G. m is a fuzzy subgroup of G if and only if m_i is an subgroup of G for $\forall t \in \text{Im } m$.

Here, if m is a fuzzy subgroup of G, then m_t is called a level subgroup of m.

Definition 2.5 ([1]): A fuzzy subset m of a ring R is called a fuzzy left (right) ideal of R if (i) $m(x - y) \ge \min(m(x), m(y))$

(ii) for all $x, y \in R$ $m(xy) \ge m(y)$ $(m(xy) \ge m(x))$.

A fuzzy subset m of R is called a fuzzy ideal of R if m is a fuzzy left and fuzzy right ideal of R.

Definition 2.6 ([5]): If *m* is a fuzzy subset of *R*, then for any $t \in \text{Im } m$, the set $m_t = \{x \in R | m(x) \ge t\}$ is called the level subset of *R* with respect to *m*.

Theorem 2.7 [1]: Let *m* be fuzzy subset of *R*. *m* is a fuzzy ideal of *R* if and only if \mathbf{M}_t is an ideal of *R* for $\forall t \in \text{Im } \mathbf{M}$.

Here, if m is a fuzzy ideal of R, then m_t is called a level ideal of m.

Definition 2.8 ([6]): A fuzzy relation m on R is the fuzzy subset of $R \times R$.

Definition 2.9 ([3]): Let *m* and *s* be fuzzy subsets of *R*. The Cartesian product of *m* and *s* is $m \times s(x, y) = \min(m(x), s(y))$ for all $x, y \in R$.

3. FUZZY SUBGROUPS AND FUZZY IDEALS

Now we will generalize some theorems in [3]..

Theorem 3.1: If m_1 and m_2 are fuzzy subgroups of G_1 and G_2 respectively, then $m_1 \times m_2$ is a fuzzy subgroup of $G_1 \times G_2$.

Proof: Let $(a_1, b_1), (a_2, b_2) \in G_1 \times G_2$.

 $\mathbf{m}_{1} \times \mathbf{m}_{2}((a_{1}, b_{1}).(a_{2}, b_{2})) = \mathbf{m}_{1} \times \mathbf{m}_{2}(a_{1}a_{2}, b_{1}b_{2})$

$$= \min(\mathbf{m}_{1}(a_{1}a_{2}), \mathbf{m}_{2}(b_{1}b_{2}))$$

$$\geq \min(\mathbf{m}_{1}(a_{1}), \mathbf{m}_{1}(a_{2}), \mathbf{m}_{2}(b_{1}), \mathbf{m}_{2}(b_{2}))$$

$$\geq \min(\min(\mathbf{m}_{1}(a_{1}), \mathbf{m}_{2}(b_{1})), \min(\mathbf{m}_{1}(a_{2}), \mathbf{m}_{2}(b_{2})))$$

$$= \min(\mathbf{m}_{1} \times \mathbf{m}_{2}(a_{1}, b_{1}), \mathbf{m}_{1} \times \mathbf{m}_{2}(a_{2}, b_{2}))$$

and

$$\mathbf{m}_{1} \times \mathbf{m}_{2}((a_{1}, b_{1})^{-1}) = \mathbf{m}_{1} \times \mathbf{m}_{2}(a_{1}^{-1}, b_{1}^{-1})$$

= min($\mathbf{m}_{1}(a_{1}^{-1}), \mathbf{m}_{2}(b_{1}^{-1})$)
 \geq min($\mathbf{m}_{1}(a_{1}), \mathbf{m}_{2}(b_{1})$)
= $\mathbf{m} \times \mathbf{m}_{2}, a_{1}, b_{2}$.

Therefore $\mathbf{m}_1 \times \mathbf{m}_2$ is a fuzzy subgroup of $G_1 \times G_2$.

Theorem 3.2: If m_1, m_2 are fuzzy ideals of R_1, R_2 respectively, then $m_1 \times m_2$ is fuzzy ideal of $R_1 \times R_2$.

Proof: $m_1 \times m_2(0_1, 0_2) = \min(m_1(0_1), m_2(0_2))$. Let $t \in \operatorname{Im}(m_1 \times m_2)$ then $t \le m_1(0_1)$ and $t \le m(0_2)$. Thus m_{l_1} and m_{2_2} are ideals of R_1 and R_2 respectively. Hence for all $t \in \operatorname{Im}(m_1 \times m_2)$, $(m_1 \times m_2)_t = m_{l_1} \times m_{2_2}$ is left ideal of $R_1 \times R_2$. Because

 $\begin{aligned} \forall (x, y), (z, t) \in (\mathbf{m}_{1} \times \mathbf{m}_{2})_{t} & \text{and } \forall (a, b) \in (R_{1}, R_{2}) \text{ we must show that } (x - z, y - t) \in (\mathbf{m}_{1} \times \mathbf{m}_{2})_{t} \\ \text{and} & (xa, yb) \in (\mathbf{m}_{1} \times \mathbf{m}_{2})_{t} \cdot \mathbf{m}_{1} \times \mathbf{m}_{2}(x - z, y - t) = \min(\mathbf{m}_{1}(x - z), \mathbf{m}_{2}(y - t)) & \text{and} \\ \text{since } \mathbf{m}_{t} \text{ and } \mathbf{m}_{2_{t}} \text{ are ideals of } R_{1} \text{ and } R_{2} \text{ respectively } \min(\mathbf{m}_{1}(x - z), \mathbf{m}_{2}(y - t)) \geq t \text{ then} \\ (x - z, y - t) \in (\mathbf{m}_{1} \times \mathbf{m}_{2})_{t} \cdot \text{Since } \mathbf{m}_{1} \times \mathbf{m}_{2} (xa, yb) = \min(\mathbf{m}_{1}(xa), \mathbf{m}_{2}(yb)) \text{ and } \mathbf{m}_{1_{t}} \text{ and } \mathbf{m}_{2_{t}} \text{ are} \end{aligned}$

ideals of $R_1 \times R_2$ min $(m_1(xa), m_2(yb)) \ge t$ then $(xa, yb) \in (m_1 \times m_2)_t$. Hence $(m_1 \times m_2)_t$ is ideal of $R_1 \times R_2$.

Corollary 3.3 i) If $m_1, m_2, m_3, ..., m_n$ are fuzzy subgroups of $G_1, G_2, ..., G_n$ respectively, then $m_1 \times m_2 \times m_3 \times ... \times m_n$ is fuzzy subgroups of $G_1 \times G_2 \times ... \times G_n$.

ii) If $m_1, m_2, m_3, ..., m_n$ are fuzzy ideals of $R_1, R_2, ..., R_n$ respectively, then $m_1 \times m_2 \times m_3 \times ... \times m_n$ is fuzzy ideal of $R_1, R_2, ..., R_n$.

Proof: . One can easily show by induction method.

Theorem 3.4: Let m_1, m_2 be fuzzy subsets of G_1, G_2 respectively such that $m_1 \times m_2$ is a fuzzy subgroup of $G_1 \times G_2$. Then m_1 or m_2 is fuzzy subgroup of G_1 or G_2 respectively.

Proof: We know that $m_1 \times m_2(e_1, e_2) = \min(m_1(e_1), m_2(e_2)) \ge m_1 \times m_2(x, y)$, $\forall (x, y) \in G_1 \times G_2$.

Then $m_1(x) \le m_1(e_1)$ or $m_2(y) \le m_2(e_2)$. If $m_1(x) \le m_1(e_1)$, then $m_1(x) \le m_2(e_2)$ or $m_1(y) \le m_1(e_2)$. Let $m_1(x) \le m_2(e_2)$. Then $\forall x \in G_1$ $m_1 \times m_2(x, e_2) = m_1(x)$. $\forall x, y \in G_1$

$$\begin{split} m_{1}(xy) &= m_{1} \times m_{2}(xy, e_{2}) \\ &= m_{1} \times m_{2}((x, e_{2})(y, e_{2})) \\ &\geq \min(m_{1} \times m_{2}(x, e_{2}), m_{1} \times m_{2}(y, e_{2})) \\ &= \min(m_{1}(x), m_{1}(y)) \end{split}$$

and

$$m_{1}(x^{-1}) = m_{1} \times m_{2}(x^{-1}, e_{2})$$

= $m_{1} \times m_{2}(x^{-1}, e_{2}^{-1})$
= $m_{1} \times m_{2}(x, e_{2})^{-1}$
 $\geq \min m_{1} \times m_{2}(x, e_{2})$
= $m_{1}(x)$.

Therefore m_1 is fuzzy subgroup of G_1 .

Now suppose that $\mathbf{m}_1(x) \le \mathbf{m}_2(e_2)$ is not true for all $x_1 \in G_1$. If $\mathbf{m}_1(x) > \mathbf{m}_2(e_2)$ $\exists x \in G_1$, then $m_2(y) \le m_2(e_2) \quad \forall y \in G_2$. Therefore $m_1 \times m_2(e_1, y) = m_2(y)$ for all $y \in G_2$. Similarly

 $\forall x, y \in G_2$

$$\begin{split} \mathbf{m}_{2}(xy) &= \mathbf{m}_{1} \times \mathbf{m}_{2}(e_{1}, xy) \\ &= \mathbf{m}_{1} \times \mathbf{m}_{2}((e_{1}, x)(e_{1}, y)) \\ &\geq \min(\mathbf{m}_{1} \times \mathbf{m}_{2}(e_{1}, x), \mathbf{m}_{1} \times \mathbf{m}_{2}(e_{1}, y)) \\ &= \min(\mathbf{m}_{2}(x), \mathbf{m}_{2}(y)) \end{split}$$

and

$$m_{2}(x^{-1}) = m_{1} \times m_{2}(e_{1}, x^{-1})$$

= $m_{1} \times m_{2}(e_{1}^{-1}, x^{-1})$
= $m_{1} \times m_{2}(e_{1}, x)^{-1}$
\ge min $m_{1} \times m_{2}(e_{1}, x)$
= $m_{2}(x)$.

Hence m_2 is fuzzy subgroup of G_2 . Consequently either m_1 or m_2 is fuzzy subgroup of G_1 or G_2 respectively.

Theorem 3.5: Let m_1, m_2 be fuzzy subsets of R_1, R_2 respectively such that $m_1 \times m_2$ is a fuzzy ideal of $R_1 \times R_2$. Then m_1 or m_2 is fuzzy ideal of R_1 or R_2 respectively. **Proof:** We know that $m_1 \times m_2(0_1, 0_2) = \min(m_1(0_1), m_2(0_2)) \ge m_1 \times m_2(x, y), \forall (x, y) \in R_1 \times R_2$. Then $m_1(x) \le m_1(0_1)$ or $m_2(y) \le m_2(0_2)$. If $m_1(x) \le m_1(0_1)$, then $m_1(x) \le m_2(0_2)$ or $m_2(y) \le m_2(0_2)$. Let $m_1(x) \le m_2(0_2)$. Then $\forall x \in R_1$ $m_1 \times m_2(x, 0_2) = m_1(x)$. $\forall x, y \in R_1$ $m_1(x - y) = m_1 \times m_2(x - y, 0_2)$ $= m_1 \times m_2((x, 0_2)(y, 0_2))$ $\ge \min(m_1 \times m_2(x, 0_2), m_1 \times m_2(y, 0_2))$

and

$$\begin{split} \mathbf{m}_{1}(xy) &= \mathbf{m}_{1} \times \mathbf{m}_{2}(xy, \mathbf{0}_{2}) \\ &= \mathbf{m}_{1} \times \mathbf{m}_{2}((x, \mathbf{0}_{2}).(y, \mathbf{0}_{2})) \\ &= \mathbf{m}_{1} \times \mathbf{m}_{2}(x, \mathbf{0}_{2}) \quad \text{or} \quad \mathbf{m}_{1} \times \mathbf{m}_{2}(y, \mathbf{0}_{2}) \\ &\geq \min \mathbf{m}_{1} \times \mathbf{m}_{2}(x, \mathbf{0}_{2}) \quad \text{or} \geq \min \mathbf{m}_{1} \times \mathbf{m}_{2}(y, \mathbf{0}_{2}) \\ &= \mathbf{m}_{1}(x) \quad \text{or} \quad = \mathbf{m}_{1}(x) \end{split}$$

Therefore m_1 is fuzzy ideal of R_1 .

Now suppose that $m_1(x) \le m_2(0_2)$ is not true for all $x_1 \in R_1$. If $m_1(x) > m_2(0_2) \quad \exists x \in R_1$, then $m_2(y) \le m_2(0_2) \quad \forall y \in R_2$. Therefore $m_1 \times m_2(0_1, y) = m_2(y)$ for all $y \in G_2$. Similarly $\forall x, y \in R_2$

and

$$\begin{split} \mathbf{m}_{2}(xy) &= \mathbf{m}_{1} \times \mathbf{m}_{2}(0_{1}, xy) \\ &= \mathbf{m}_{1} \times \mathbf{m}_{2}((0_{1}, x).(0_{1}, y)) \\ &\geq \mathbf{m}_{1} \times \mathbf{m}_{2}(0_{1}, x), \quad (\mathbf{m}_{1} \times \mathbf{m}_{2}(0_{1}, y)) \\ &= \min(\mathbf{m}_{1}(0_{1}), \mathbf{m}_{2}(x)) \quad (= \min(\mathbf{m}_{1}(0_{1}), \mathbf{m}_{2}(y)) \\ &= \mathbf{m}_{2}(x), \quad (= \mathbf{m}_{2}(y)). \end{split}$$

Therefore m_2 is fuzzy ideal of R_2 .

Corollary 3.6: Let $m_1, m_2, m_3, ..., m_n$ be a similar fuzzy subsets of $G_1, G_2, ..., G_n$ ($R_1, R_2, ..., R_n$) of such that $m_1 \times m_2 \times m_3 \times ... \times m_n$ is fuzzy subgroup (ideal) of $G_1 \times G_2 \times ... \times G_n$ ($R_1, R_2, ..., R_n$). Then m_1 or m_2 or m_3 or ...or m_n is a fuzzy subgroups (ideals) of $G_1, G_2, ..., G_n$ ($R_1, R_2, ..., R_n$) respectively.

Corollary 3.7: Let \mathbf{m}_1 and \mathbf{m}_2 be a similar fuzzy subsets of G_1 and G_2 (R_1 and R_2) of such that $\mathbf{m}_1 \times \mathbf{m}_2$ is fuzzy subgroup (ideal) of $G_1 \times G_2$ ($R_1 \times R_2$). If $\forall x \in G_1, \forall y \in G_2$ $\mathbf{m}_1(e_1) = \mathbf{m}_2(e_2)$ $\mathbf{m}_1(x) \le \mathbf{m}_1(e_1)$ and ($\forall x \in R_1, \forall y \in R_2$ $\mathbf{m}_1(0_1) = \mathbf{m}_2(0_2)$, $\mathbf{m}_1(x) \le \mathbf{m}_1(0_1)$ and $\mathbf{m}_2(y) \le \mathbf{m}_2(0_2)$) then \mathbf{m}_1 , \mathbf{m}_2 is a fuzzy subgroups (ideals) of G_1 and G_2 (R_1 and R_2).

Corollary 3.8: Let $m_1, m_2, m_3, ..., m_n$ be a similar fuzzy subsets of $G_1, G_2, ..., G_n$ $(R_1, R_2, ..., R_n)$ of such that $m_1 \times m_2 \times m_3 \times ... \times m_n$ is fuzzy subgroup (ideal) of $G_1 \times G_2 \times ... \times G_n$ $(R_1 \times R_2 \times ... \times R_n)$. If $\forall x_1 \in G_1, \forall x_2 \in G_2, ..., \forall x_n \in G_n$ $m_1(e_1) = m_2(e_2) = m_3(e_3) = ... = m_n(e_n)$, $G_1, G_2, ..., G_n$ $m_1(x_1) \le m_1(e_1)$, $m_2(x_2) \le m_2(e_2)$, $m_3(x_3) \le m_3(e_3), ..., m_n(x_n) \le m_n(e_n)$ $(\forall x_1 \in R_1, \forall x_2 \in R_2, ..., \forall x_n \in R_n$ $m_1(0_1) = m_2(0_2) = m_3(0_3) = ... = m_n(0_n)$, $m_1(x_1) \le m_1(e_1)$, $m_2(x_2) \le m_2(0_2)$, $m_3(x_3) \le m_3(0_3), ..., m_n(x_n) \le m_n(0_n)$) then $m_1, m_2, m_3, ..., m_n$ is a fuzzy subgroups (ideals) of $G_1, G_2, ..., G_n$ $(R_1, R_2, ..., R_n)$ respectively.

4. CONCLUSIONS

One can examine these theorems in any Rings. That is, it true that these theorems are valid in non commutative rings without identity element.

REFERENCES

- [1] Liu, W.J, "Fuzzy invariant subgroups and fuzzy ideals", Fuzzy Sets and Systems, 8, 133-139, 1982.
- [2] Rosenfeld, A., "Fuzzy groups", J. Math. Anal. Appl. 35 512-517, 1971.
- [3] Malik D.S. and Mordeson J. N., "Fuzzy relations on rings and groups", Fuzzy Sets and Systems 43 117-123, 1991.
- [4] Malik D.S. and Mordeson J. N., "Fuzzy Commutative Algebra", World scientificPublishing, 1998.
- [5] Zadeh L. A., "Fuzzy sets", Inform. Control 8 383-353, 1965.
- [6] Zadeh L. A., "Similarity relations and fuzzy ordering", Inform. Sci. 3, 177-220, 1971.

Pdf Source: Qgk _