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KESIRSEL SUPERSIMETRIK- sl(2)

OZET

Permiitasyon grubunun S,'invmymt formlar1 Uzerinde kurulan Lie cebrinin kibik kokid Hopf cebri
formalizminde ifade edildi. n=3"te sI(2) 'nin N=4 kesirsal siiper genellemesini gézoniine al dik.
Anahtar Sozciikler: Kesirsdl siipercebirler, S|(2) Lie cebiri, Kesirsel S'Jper-s|(2)

ABSTRACT

The 3rd root of Lie algebra based on the permiitation group 53 invariant forms is formulated in the Hopf
algebra formalism. We consider N=4 fractional super generalizationsof sl(2) at n=3
K eywords: Fractional superalgebras, S|(2) Liealgebra, Fractional super-Sl(Z)

1. INTRODUCTION

To arrive a a superal gebra one adds new e ements Qa
Lie algebraand defines the rel ations

{Qa!Qb}:bajbxj )

observing that the anticommutator in the above relation is invariant under the cyclic Z2 or

to generators X ; of the corresponding

permtation S2 groups anticommutator. To arrive at cubic root of aLiealgebra g , instead of (1)
has the cubic relation
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QaQng +QgQaQb +QngQa :bajngj 2
whichis Z 4 invariant and the cubic relation
Qa{ b’Qg}+Qb{Qa’QQ}+QQ{Q3Qb}:bajngj )

which is S3 invariant. From the above rdations only (3) appears to be consistent at the co-
algebralevel. So we used therdation (3).

Fractional superagebras based on Sn invariant form were first introduced in [1,2] and
later constructed in the Hopf al gebra context and defined their dual in [3]. In this paper, according
to[3] we discuss fractiona super- Sl (2) for N=4.

There are other approaches to fractiond supersymmetry in the Literature [4-9]. For
example, one can arrive a fractiond super agebras by using quantum groups at the roots of unity
[10]. The plan of the paper is as follows. In the section 2, we give a formulation of fractional
superalgebras in the Hopf agebra formalism from the [3]. In the section 3, we consider N=4

fractional supergeneralization of Sl (2) a n=3. we denoted this algebraby U (SI (2))
2. REVIEW OF FRACTIONAL SUPERALGEBRAS

Let U (g) be the universal enveloping algebra of a Lie algebra J generated by Xj =1,2,...,

dim(g) with

dim(g) ’

[Xi,Xj]: a G X«

k=1
Where C,'J-( are the structure constants of the Lie algebra J . The Hopf algebra structure

of U (g) isgiven by

D(X,)=X,A1+1A X,, e(X,)=0, s(x;)=-X,. )

4

To arrive a cubic root of U (g) we shdl use S; invariant form. Therefore, we
defined an agebra generated by X ; , j=1,..., dim(g) and Q.. .K, a =1,...,N saisfying the
relations (4) and

{@.Q,.Q}=h,X, (6)
. x]=2}Q, ™
and

KQ =qQK ,g’°=1, K*=1 ®)
where
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.29 ale.el+al.Qf+Qlx. Q.

isthe S; invariant form, (?,,kj and a;b, bajbg are the structure coefficients satisfying the Jacobi

and super Jacobi identities. This algebrais denoted by the symbol U 3',\' (g) . The above algebrais
aHopf agebrawith the following co structures [3]:

D(Q)=Q A1+KAQ , DK)=KAK |, ©
e(Q)=0 , e(K)=1 , (10)
S(Q)=-KXQ; , S(K)=K?. (12)

To define structure constant a;b and bajbg we have to derive identities involving the

commutator and S; invariant form. One can check that relations

[A[B.cll+[c.[aB]+[B[C.Al=0 (2
[A{B,c,D}]+{[B,Al.C,D}+{B.[C, A], D} +{B,C.[D, A}} =0 (13
and

[A{B.c.D}]+[B{AC,D}]+[c{B,AD}|+[D{B.C.A]]=0 S
areidentically satisfed [3]. Therelation (12) isthe usual Jacobi identity.

Inserting

A=X; , B=X; , C=Q, (19)
into (12) and using (7) and (4) we get

Yoo o die) (16)
a (aas aj, - aj asb): a Ca,,

s=1 k=1

Comparing the above relation with (4) we conclude that the N~ N matrices
al o (a;b )a bt define a N-dimensiond representation of a given Lie algebra Of course,

these matrices are not unique.
Let us now consider restrictions on structure coefficients coming from the other
identities. Inserting

A:Xk , B:Qa , C:Qb , D:Qg (17)
into the identity (13) we get

c"\l K |ai (SN K |xi ding(g) i j (18)
a (aas bsbg + abs bsag + ags bsba ): a Cjk be:bg

s=1 j=1
and
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A:Qs ! B:Qa ! C:Qb ! D:Qg (19
into (14) and using (6), (7) we obtained following thereation

din‘;(g)( K Ak K ok K ok K Ak )_ (20)
a babgast +bsabag +bgsaabt +bbgsaat =0.

k=1

3.N=4FRACTIONAL SUPER- S (2)

We know that the generators of the algebra Sl (2) satisfy the following commutation relations

[Xl,Xz]:X3 [X3,X1]22X1 [X3,X2]:-2X2 (1)
From therelation (21) one has
;=1 ;=2 ch =-2 (22

For N=4, the matrix aj :{a,jb} due to (16) is an arbitrary 4-dimensiona
representation of Sl (2) . The solution of (18) and (20) for bajbg is fully determined by this
representation.  where b is symmetric in a,b and g. we consider N=4 super

P
iP
generdization of sl(2) & n=3, that is =€ 3 . We have different superalgebras depending on

the choice of a’ .

(i) wetake @), = 0. Thentherelations (18) and (20) imply by, = 0. The obtained
structure constants imply that the fractional superalgebra U ; (SI (2)) isthe direct product of the
universa enveloping algebra U (SI (2)) with the Hopf algebra generated by Q1 ,Q,,Q;,Q,
and K satisfying the relations

KQ=aQK 1{2.Q,.Q}=0 K3=1 (23

and the Hopf algebra structure (9)- (11).

(ii) Take the vector representation

@ V30 09 20 0 0 05 800 00
L, C0 0 2 0+ , &30 0 0 , 01 0 0=
T=¢ = a&=¢ + & =c - (2
0 0 0 432 0 2 0 0 00 -1 07
éo 0 0 04 go 0 3 0y goo 0 -3g

acal=alzal=V3 ah=al=2 @
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into (20) and (18), will give al parameters bajbg are zero. Thus we obtained the falowing
fractional superalgebra:

{Qa Q, ,Qg}= 0 (26)
and
[Q.X]=43Q,  [Q.X]=3Q

[QZ! Xl] =2Q; [QZ’ XZ] = ‘/_BQl [QZ’ X3] =Q (27

[Qsi Xl] = \/_3Q4 [Qsi Xz] = 2Q2 [Qsi Xs] =" Qs

[Q4’ Xz] = \/§Q3 [Q4’ Xs] =- 3Q1

Note that, for N=3 the relaions (26) are not zero [3].

(iii) Assume that two of the fractional super generators Q,Q,,Q; andQ, transform
as spinors and the remaining two transforms as scalars, that is

€O 1 0 0 €O 0 0 Oy 6 0 0 Oy
& G & G & G
al:go 0 0 0y azz? 0 0 0 a3:go -1 0 0
& 0 0 0u © 0 0 00 &© 0 0 o (28)
© 0 0 of © 0 0 o © o0 0 of
The substitution of
1 _ A2 — A3 — 3 _ 29
a,=ay=ai=1 a,=-1 )
into (20) gives
b, =- 3%, = 35,
1
1 2 — 3
%_'ébul_buz (30)

1 _ Rh2 —oRr3
b223 - b113 - 2b123
1 _ Rh2 — o3
b24 - b114 - 2b124
The subgtituting these into (18) one finds that the only solution is bajbg =0. Inthis
case, we obtained the following fractional superalgebra:

{Qe.Q}=0, &
[Ql’xl]:QZ’ [QZ’XZ]:QI , [Ql’ XB]:Ql , [QZ’XB]:_QZ' (32)

Note that, for N=3 the relations (31) are not zero [3].
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4. CONCLUSION

By applying fractional super algebra methods which are explained at Ref [3], to sI(2) Lie agebra
which is a specia case, we obtained N=3 fractiond super generdization of sl(2) at n=3. In this

generdization some b/ structure constants where different from zero.

abg
In this paper, by applying the same method we obtained N=4 fractional super

generdization of sl(2) at n=3 and found bélbg structure constants equal to zero.
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