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ÖZET 

Manyertik bir cihaz içerisindeki belirlenmiş noktalarda ve doğrultuda arzu edilen bir manyetik akı yoğunluğu 
dağılımını yaklaşık olarak elde etmek için, manyetik bir cihazın eniyi tasarımını elde edebilen bir ters sonlu 
öğeler yöntermi geliştirilmiştir. Ağırlaştırılmış Lagrange çarpanları yöntermi kullanılarak en küçük kareler 
fonksiyonundan oluşan bir amaç fonksiyonu ile bir dizi kısıt denklemlerinden oluşan bir eniyilik problemi 
kısıtsız bir eniyilik problemine dönüştürülmüştür. Lagrange-Newton yöntemine dayalı ikinci mertebeden bir 
yaklaşım ile dönüştütülmüş problemin çüzülmesiyle, manyetik cihazın tasarımı adım adım iyileştirilmiştir. 
Manyetik malzemede doymanın gözönünde bulundurulması durumunda, ikinci mertebeden duyarlılık analizi 
için gerekli türevlerin hesaplanması oldukça zor bir işlemdir. Bu makalede, geliştirilen yeni bir yöntem ile 
eniyileştirme işlemi ile doğrusal olmayan statik manyetik alan probleminin çözümüne ilşkin doğrusal olmayan 
sonlu öğeler denklemleri uygun bir biçimde birleştirilerek, karmaşık duyarlılık analizi verimli bir şekilde 
yapılabilmiştir. Cihazın geometrisi için parametrik bir modelinin oluşturulması ve lineer olmayan manyetik 
malzemelerin matemtiksel modellerinin kurulmasına ilişkin yöntemler araştırılarak, geliştirilen bir bilgisayar 
programının içerisinde kullanılmasıyla, karalı bir çözüm elde edilebilmiştir. Elektrik makinalarının tasarımına 
ilişkin çeşitli problemler üzerinde yapılan denemlerde, bu makalede geliştirilen yöntemlerin sonuçları 
sunulmuştır.  
Anahtar Sözcükler: Sonlu elemanlar (öğeler) yöntemi, optimizasyon (eniyilik), manyetik sistemler (dizgeler) 

ABSTRACT 

An inverse finite element method was developed to find optimal geometric parameters of a magnetic device to 
approximate a desired magnetic flux density distribution at certain test points and directions selected in the 
device. The augmented Lagrange multipliers method was utilized to transform the constrained problem 
consisting of a least-square objective function and a set of constraint equations to the unconstrained problem. 
A second-order approach based on the Lagrange-Newton method was used to minimize the unconstrained 
problem to improve the design iteratively. Numerical calculation of derivatives in the second-order design 
sensitivity analysis becomes a difficult task if saturation in material properties is accounted. A novel approach 
is developed to minimize the computational effort by directly combining the optimization process with the 
nonlinear finite element equations. The best capabilities to parametrize the device geometry and to model the 
nonlinear material characteristics were incorporated into the optimization program for rapid sensitivity 
analysis. Demonstration of various test cases arising from optimally designing electrical machinery verified 
the validity of the overall theory and developments. 
Keywords:  Finite element method, numerical optimization, magnetic systems 
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1. INTRODUCTION 
 
The theory of the finite element method (FEM) for calculating flux distribution in electromagnetic 
devices has been well established. Finding a vector potential solution for a given geometry, 
material properties, excitation sources, and so on is called a “forward” problem. Due to the 
competitive world market, designers attempt to reduce cost, weight, and/or to improve efficiency 
and reliability of electromagnetic devices. Therefore, the designer is more interested in finding the 
geometry of a certain portion of a device, such as iron parts, sizes and locations/positions of 
excitation coils to satisfy a given field, torque or force pattern, rather than finding how magnetic 
flux is distributed inside the device. Since this requires back-calculation of device-descriptive 
design parameters, these types of design optimization problems are classified as “inverse” 
problems.  

Although the theory of mathematical programming has been widely developed since the 
1950’s, the initial research on optimal design problems emerged from the area of structural 
mechanics in the early 1970’s. During the last 20 years, the optimal design techniques combining 
optimization methods with solution of governing partial differential equations (PDE) have been 
extensively studied. The results can be found in the textbooks, for example, Gallagher and 
Zienkiewicz [1], Haug and Arora [2], Kirch [3], Pironneau [4], Vanderplaats [5], and Haslinger 
and Neittaanmaki [6]. 

In electromagnetics, there have recently been diverse applications of design 
optimization problems appearing in the literature [7]-[46]. Some applications are concerned with 
optimizing device output forces (Gitosusastro et al. [9], and Saldanha et al. [10], [11]) while 
others are concerned with minimizing eddy current losses in conductive parts of devices (Kasper 
[12]), or minimizing production cost (Arpino et al. [13], Appelbaum et al. [14], [15]). Many of the 
applications deal with optimizing field patterns where an objective function in the form of the 
squared sum of the differences between calculated and desired values of field quantities at 
selected points is minimized. The results have appeared in the recent papers (Simkin and 
Trowbridge [16], Weeber [17], Weeber and Hoole [18], [19],  Koh et al. [20], Park et al. [21], 
[22], Subramaniam et al. [23], and Vasconcelos et al. [24]). In this type of problems, the objective 
function is expected to achieve a minimum at zero in the absence of constraint equations. 
However, in the presence of constraint equations, the optimum is not at zero, but the best possible 
solution approaching the desired criterion is found. In some problems, a unique solution may not 
exist or there may be no solution. 

There have been different field analysis methods used in electromagnetic optimization. 
Initially, integral methods were performed for field calculations while gradients with respect to 
design parameters were determined by the finite difference method (FDM) (Gottvald [44], [45], 
[46], Simkin and Trowbridge [16], and Park et al. [21]). Perhaps, one of the earliest attempts 
using the finite element method (FEM) in an optimization process were presented by Salon and 
Istfan [7], and Istfan and Salon [8]. In their work, they cast a sensitivity analysis based on direct 
differentiation of the finite element matrices with respect to nodal displacements describing a 
device’s geometry. Weeber [17], Weeber and Hoole. [18], [19],  Koh et al. [20], Park et al. [21], 
and Hoole [25] subsequently used this direct differentiation scheme for sensitivity analysis. The 
boundary element method (BEM), developed for analysis of open boundary problems, has 
recently been used in sensitivity analysis (Koh et al. [20], Park et al. [21], Enokizono and 
Tsuchida [26], and Enokizono et al. [27]) 

Since the objective function is a highly nonlinear function of design parameters, a wide 
variety of nonlinear optimization strategies have been investigated, and tested on different 
problems for their speed, convergence and efficiency (Preis et al. [28], and Gottvald [44]). These 
optimization methods are classified into two main categories: 1) deterministic methods, and 2) 
stochastic methods. The deterministic methods include the first-order methods such as the 
steepest-descent, conjugate gradient and quasi-Newton methods (see, e.g., [5], [47] and [48]). 
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These methods are based on finding the optimum in the decreasing gradient direction, requiring 
only the first-order derivatives. The first-order derivatives are calculated by means of sensitivity 
analysis incorporating various field solution techniques, such as the finite difference, and the 
finite element methods. Stochastic methods such as simulated annealing (SA) [16], [49], and the 
methods based on evolution strategies [45], and genetic algorithms (GA) [49] are zeroth-order 
(derivative-free) methods, requiring evaluation of the objective function at so many points that, 
depending on the problem complexity, they may become computationally exhaustive. However, a 
major advantage is that these two methods have been shown to be globally convergent (Gottvald 
[46]). 

Independently carrying out the field analysis and optimization steps has some 
advantages and disadvantages. One advantage is that commercially available efficient 
optimization packages save time for program development, especially for program modification 
when the optimization problem is changed, (e.g., when the objective function is modified or new 
constraint equations are added to the problem). Another advantage is that the program might have 
more flexibility in choosing another optimization algorithm when one cannot perform as well as 
the other. On the other hand, the applications in which more sophisticated derivative calculations 
are involved result in excessive number of calls of field analysis programs, increasing the 
computational cost. 

A great deal of design optimization tools developed so far conventionally use formal 
optimization techniques using the first-order or gradient information to find an optimization 
direction to progress the design towards the optimum solution. The first-order derivatives of the 
objective function as well as the design constraints are formulated in a way that the field potential 
is considered as a function of design variables. In most problems, this relationship is implicit and 
the necessary derivatives are obtained by means of the design sensitivity analysis. Following the 
forward solution to the field potentials outside the optimization process, the derivatives of the 
field potentials with respect to the design parameters are numerically calculated by perturbing the 
field equations. While the first-order methods are computationally affordable and can be 
efficiently solved for large-sized optimization problems, extension to the second-order 
optimization methods become cumbersome, requiring intensive computational effort with 
increasing number of design parameters and constraint equations. Especially, if nonlinearity of 
material properties is considered for more realistic design problems, this numerical procedure 
becomes even more complicated when forming the large matrices from the perturbed field 
equations. 
 
2. BASIC CONCEPT OF OPTIMAL DESIGN 
 
The design optimization process requires basically two main modules: a module for field solution 
which utilizes an analytical (seldom) or numerical approximation (often) based on differential or 
integral approaches, such as finite difference methods, finite element method, boundary element 
method or hybrid methods (BEM-FEM); a module which employs optimization strategies ranging 
from crude “trial and error” strategies to robust mathematical programming techniques. 

Traditional computer-aided design (CAD) systems integrate these two modules to 
search for an optimal solution based on simple, trial-and-error principles (see, for example, Hoole 
[50], Lowther and Silvester [51], and Binns et al. [52]). To find an optimal design, the 
optimization parameters are modified for each possible trial design state, and then the field 
analysis is performed for the new design. Then, the objective function is evaluated and the 
constraint equations are checked if they are satisfied. This process is continued until a desired 
performance is achieved. 

This process is expected to grow as qn  (where n  is the number of design variables and 
q  is the number of states for each design variable). Consider a simple problem to be optimized 
with respect to three independent design variables, and each variable has three possible design 
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states. Also, suppose that each call of field analysis program requires one-tenth of a CPU second 
on a computer. Thus, the analysis program is called 933 =  times to evaluate the objective 
function for all possible design states requiring a total of 0.9 CPU second on the computer. This 
would probably be considered as an economical and efficient solution. However, most practical 
design problems typically require as many as 10 variables and 10 design states for each variable. 
In this case, a total of 1010 analysis calls are made to evaluate the objective for all possible design 
states. Suppose a relatively more accurate field analysis is required for these problems, and each 
analysis call requires one second. It will be expected 320 years of computation on the same 
computer! Despite the fact that these possible trial design states are eliminated by an experienced 
design engineer or an expert system using some knowledge-based heuristics, the process is 
computationally exhaustive and its use is still impractical for complex engineering problems. 

 

 
Figure 1. Automated Design Process 

 
3. AUTOMATED OPTIMAL DESIGN 
 
In recent years, traditional design procedures have been automated using pre- and post-processing 
modules cooperating with commercially available field analysis and numerical optimization 
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software. The principle of an automated optimal design (AOD) system is based on a “tight” 
integration of the modules into an iterative loop in which the unknown design parameters are 
progressively updated to advance the design towards the optimum solution. The block diagram in 
Figure 1 shows the relations among the basic modules during the iterative loop is in progress. 
Starting with a given initial geometry, the pre-processor module generates the initial mesh data 
used in the finite element analysis module. After the field potential is accurately solved, the 
objective function is evaluated using the field or other quantities computed within the post-
processing module. If the desired objective is not satisfied, the field solution is passed to the 
optimization module to perform a line search procedure to obtain an optimum point along the 
gradient direction computed by the design sensitivity analysis. Once the new values of the design 
variables are computed, the mesh coordinates are updated, and the new quantities are computed to 
check if the desired performance is achieved. If the new result is not satisfactory, then iterations 
are carried out until a satisfactory result is attained. 

While traditional optimal design procedures require substantial amount of 
computational time and human-computer interaction, AOD systems using numerical optimization 
techniques offer a logical strategy to approach the optimal solution in a systematic way. Although 
the discipline of nonlinear programming is well established, applications to real engineering 
systems are quite new and engineering ingenuity is required for adaptation of these techniques to 
a variety of design problems. In the remainder of this paper, methodologies for developing a 
computer tool for design optimization of magnetic systems will be discussed. 
 
4. FINITE ELEMENT MODEL OF MAGNETOSTATIC FIELD  
 
4.1. Field Equation 
 
The general form of the governing partial differential equation of a magnetostatic problem is 
derived from Maxwell's equations. Neglecting the high frequency effects, consider  

JA
rr

=×∇×∇ )(ν ,  (1) 
where displacement currents are neglected (i.e., no energy is stored in electric field). This 
equation represents the most general case of magnetostatic phenomenon which takes place in 
mediums with nonlinear magnetic reluctivity characteristics. Since this study focuses strictly on 
two-dimensional cases, the current density vector, J

r
, possesses only the longitudinal (z-directed) 

component. Thus, Equation (1) is reduced to the scalar nonlinear Poisson's equation 

JA −=∇⋅∇ )(ν ,  (2) 

where ),( yxA  and ),( yxJ  denote the z-directed components of  A
r

 and  J
r

 respectively. 
 
4.2. Local Element Matrices  
 
For numerical solution of Equation (2), FEM can be furnished based on variational principles by 
which the correct potential minimizes the energy functional [53]: 

∫∫ ∫Ω
⎟
⎠
⎞⎜

⎝
⎛ ⋅−=ℑ
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where Ω  is the problem domain in which potential field takes place. 
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Figure 2. A triangular element with three vertex coordinates 

First, the problem region is discretized into two-dimensional triangular elements (see 
Figure 2) and the potential function inside each element is approximated by a linear polynomial 

yxyxA 321),( ααα ++= ,  (4) 

where the α ’s are the coefficients of this polynomial and defined as 
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e
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∆
=α  

( )3322112 2
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e
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∆
=α  

( )3322113 2
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e
++
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 (5) 

where 1A , 2A  and 3A  are the vector potentials on the vertices of the triangular element, and e∆  is 
the area of this element and is defined by 

12213212 cbcbaaae −=++=∆ .  (6) 

The geometrical coefficients, a’s b’s and c’s, are defined as 
23321 yxyxa −=  321 yyb −=  231 xxc −=  

31132 yxyxa −=  132 yyb −=  312 xxc −=  

12213 yxyxa −=  213 yyb −=  123 xxc −= , 
 (7) 

where x’s and y’s are the coordinates of the element vertices (see Figure 2). Thus, the components 
of the element flux density are calculated by 

23
2
3

2
2

2 ;where, αααα −=
∂
∂

−==
∂
∂

=+=
x
AB

y
ABB yx   (8) 

which implies that the flux density is constant throughout the element. The energy functional 
given in Equation (3) can be written for a triangular element 

SAJBBA eS

B ee d)(d)()( )(

2

0

22
2
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⎟
⎠
⎞⎜

⎝
⎛ −=ℑ ν .  (9) 

To apply the minimization principle, the partial derivatives of Equation (9) with respect 
to the potentials at the vertices of this triangular element are set to zero 

)3,2,1(for0)(
==

∂
∂ℑ k

A
A

k

e

.  (10) 

Then, applying the differentiation into Equation (9) directly yields the following integral equation 
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Obtaining the closed form evaluation of integrals in Equation (11) for each nodes (i.e., ) 
results in a set of three nonlinear equations 

eeee
13131333 )( ×××× = FAAK ,  (12) 

where eK  is the element stiffness matrix, eA  is the vector potentials at the element vertices, and 
eF  is the source vector representing the excitation sources. The entries of the element stiffness 

matrix in Equation (12) can be written more explicitly as 
ee B 33

2
33 )( ×× = PK ν ,  (13) 

where eP  is the element geometric coefficient matrix whose entries are calculated by 

( )jijie

e
ij ccbbP +

∆
=

4
1   (14) 

and the entries of the source vector are calculated by 
e

e
e

i JF
3
∆

= ,  (15) 

where eJ  denotes the element current density and is assumed constant throughout this element. 
 
4.3. Global Field Equations 
 
The total energy functional is calculated by summing the individual contributions of NE elements 
inside the problem region. Thus, the total energy inside the system is expressed by 

,d)(d)()(
1

2

0
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e
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e e

B e AJBBA Ω⎟
⎠
⎞⎜

⎝
⎛ −=ℑ ∑∫ ∫

=
Ω

ν   (16) 

where eΩ  denotes the domain of the element-e and B denotes the magnitude of the magnetic flux 
density inside this element. The functional in Equation (16) is a function of all  vector potentials 
at the nodes of the triangular elements defined. Finally, minimization of the energy functional 
with respect to the  nodal vector potentials (i.e., iN AAAA ∂∂ℑ /),( 21 L  for Ni ,,2,1 L=  ) results in 
the well-known nonlinear global field equations of the finite element method 

,)( 111 ×××× = NNNNN FAAK   (17) 

where K  is the global stiffness matrix, A  includes the vector potentials of N nodes, and F  is 
the source term due to applied excitation currents to create the magnetic field in the system. The 
global stiffness matrix in Equation (17) is a function of the magnetic vector potentials because of 
the nonlinear reluctivity characteristics of saturable iron parts. 
 
5. THE OPTIMAL DESIGN PROBLEM 
 
This section is concerned with presenting the basic mathematical steps in formulating the 
optimization algorithm proposed in [5]. First, the optimization problem will be described in a 
standard form. It will be shown how the objective function and the constraint equations are 
normalized to improve the condition of the optimization problem. Then, the constrained problem 
is transformed to an unconstrained problem by forming the augmented Lagrange function as 
described in [5]. The optimality conditions are imposed to the augmented Lagrange function to 
find a minimizer for the unconstrained optimization problem. The Lagrange-Newton equations 
are obtained by linearizing the nonlinear equations from the necessary conditions. 
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The iterative optimization procedure developed in this section alters the geometry of 
certain desired parts of the magnetic system until the calculated flux densities are approximately 
matched at selected locations. The desired performance is obtained by minimizing the objective 
function expressed in the least-squares sense 

[ ]
2

1
,, ),(),( ∑ −=

=

M

sc BBΦ
l

ll
dAdA ,  (18) 

where 
l,sB  and 

l,cB  denote the specified and calculated magnetic flux densities at M test points, 
d  and A  denote the nodal displacements, the unknown deflections of selected nodes on the 
optimized geometry from the initial device geometry, respectively. 

During the iterative process, it is required that the field equations be satisfied as the 
geometry is altered. By adding the field equations given in Equation (17) to the optimization 
problem as nonlinear equality constraints, the objective function becomes a function of both the 
geometric parameters and the magnetic vector potentials. On the other hand, the geometric design 
parameters are subjected to some constraints in the problem region (e.g., the excitation coils 
cannot be larger than some dimensions, and the excitation currents are limited by some magnitude 
due to thermal constraints). With these assumptions, the optimization problem is expressed as 
minimization of an objective function subject to a set of nonlinear constraint equations: 

[ ]
2

1
,,

 ),(),(:minimize ∑ −=
=

M

sc BBΦ
l

ll
dAdA  (19) 

NkFAK
N

n
knkn ,,1for0)(),(:subject to

1
L=∑ =−

=
ddA  (20) 

                                       DFkddd U
kk

L
k ,,1for L=≤≤ , (21) 

where L
kd  and U

kd  are lower and upper bounds of the nodal displacement vector, kd , assigned to 
some selected nodes on the device geometry to be optimized. 
 
5.1. Normalization Of Objective Function And Constraints 
 
The objective and the constraint functions in Equations (19) and (21) are of different dimensions. 
These functions directly depend on magnitude of excitation sources (such as applied excitation 
current density in the field windings) and the scale in which the physical device dimensions is 
defined (in this study all dimensions are defined in meter). The dimensions of the objective 
function in Equation (19), the residual of global finite element equations in Equation (20), and the 
side constraints in Equation (21) are the square of Tesla (Tesla is the dimension of magnetic flux 
density), Ampere, and meter, respectively. For example, if the applied field current is doubled 
(ignoring the effects of saturation in iron materials), the objective function quadruples and the 
residual of the finite element field equations doubles, while the inequality constraints in Equation 
(21) will remain the same because they directly depend on the scale of the device dimensions 
defined. This unbalance among the different functions causes the following undesired effects: 

• numerical difficulties in solving the constrained optimization problem when a constraint 
function or the objective function dominates the optimization process; 

• dependence of the objective function on physical device parameters prevents the user from 
correctly interpreting optimization performance computed for different excitation currents. 

Objective Function. A proper normalization of the objective function and the constraint 
equations is therefore necessary to improve the conditioning of the unconstrained minimization 
process in augmented Lagrange multiplier method. 

One way for normalizing the least-squares error or the objective function in Equation 
(19) is to divide each individual contribution by the corresponding 

l,sB . This normalization 
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method is not always numerically suitable because it is limited to a specific case that all values 
must be different from zero. Alternatively, a better normalization is to multiply Equation (19) by a 
normalization factor 

[ ] 2

1
,, ),(),( ∑ −=Φ

=
Φ

M

sc BBk
l

ll
dAdA  (22) 

where the normalization factor for the objective is calculated by ∑=Φ

M

sBk 1

2

l, . The objective 
function becomes dimensionless since it is normalized relative to the squared summation of 
specified flux densities. The form of normalized square root of the error function ( Φ ) indicates 
the relative average error per test point and it will be used in all results demonstrated in this paper. 
Field Equations. The global finite element field equations in Equation (20) are normalized by 
multiplying the overall equations by a constant 

NkFAK
N

n
knknf ,,1for0)(),(k

1

L=⎥⎦
⎤

⎢⎣
⎡ =−∑

=

ddA  (23) 

where fk  is calculated by ]max[/1 if Fk =  (where Ni ≤≤1 ) from the assembled global 

source vector 1×NF . Therefore, the dependency of the residual of the global finite element 
equations on the applied currents is eliminated. 
Costraints. To express the optimization problem in the form of a standard constrained 
optimization problem, the linear, double-sided inequality constraints in Equation (21) are 
converted into a set of quadratic but single-sided inequalities as 

This inequality constraint function on the right side of Equation (24) has two valuable 
properties: the first, it takes a negative value as long as the nodal displacement stays between 

L

kd and U

kd ; the second, it is dimensionless since it is divided by the term 2)( L
k

U
k dd − . 

 
5.2. Augmented Lagrange Function 
 
Considering the description of the augmented Lagrange function and the objective function and 
the set of constraint equations, the augmented Lagrange function is formed by adding the equality 
and the inequality constraints to the objective function as 

where DF  denotes the total number of nodal displacements assigned to the geometry to be 
optimized, kλ and kµ denote the Lagrange multipliers corresponding to the equality and inequality 

constraints, pr  is the penalty multiplier for the inequality constraints used in the augmented 

Lagrange multiplier method, and kθ  is the augmented inequality function expressed as 
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k
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k
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(25) 
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⎣

⎡
−

−
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U
k

k
U
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L
k
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2
,)(max 2

µ  .                       (26) 
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Note that the equality constraints from the finite element field equations are not 
augmented to avoid complex second-order derivative calculations of the squared equality 
constraints. Thus, the Lagrange multipliers associated with the equality constraint equations are 
calculated in the iterative optimization process. 

 
5.3. First-Order Necessary Conditions 
 
The augmented Lagrange function given in Equation (25) is a nonlinear function of the magnetic 
vector potentials and the unknown geometric design parameters describing the optimized device 
geometry. This standard optimization problem with nonlinear constraints is widely studied in the 
field of mathematical programming. The solution is obtained by setting the optimality conditions 
on the Lagrangian. Then, the system of resulting nonlinear equations is linearized, and the 
unknown variables describing the geometry and the magnetic field are obtained by the Newton-
Raphson method. 

To minimize the unconstrained optimization problem in Equation (25),  unknown 
variables are comprised in a vector  

{ }T,, λdAX =  (27) 

Let the optimal solution be { }T**** ,, λdAX = . Then, the stationary points, *X , are 
obtained by applying the first order necessary conditions. These conditions are thus met by taking 
the first partial derivatives with respect to the unknown variables and setting them equal to zero 
(i.e., 0)( * =∇ XL ): 

The  DFN +2  nonlinear expressions obtained in Equations (28)-(30) are explicitly 
expressed in terms of the finite element matrices, the magnetic field quantities, and their 
derivatives as:  

NiL

i

A ,,1for0 L==
λ∂
∂  

Ni
A
L

i

A ,,1for0 L==
∂
∂  

DFi
d
L

i

A ,,1for0 L==
∂
∂ , 

(31) 

where an indicator flag is defined as 
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=
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The value of this flag takes a value of either 1 or 0 depending on the state of the 
augmented inequality constraint given in Equation (26). If the inequality constraint becomes 
active, its derivatives with respect to the design parameters are nonzero [17]. 

The resulting nonlinear equation system can be uniquely solved for independent 
variables for an initial starting point { }T0000 ,, λdAX = . It should be noted that the initial estimate 
for the optimization variables may be very critical depending on the problem. In the case of 
multiple solutions, convergence to the global optimum solution is not guaranteed unless the initial 
guess is close enough to the optimal point. Otherwise, the solution may be trapped at a local 
optimum solution if multiple solutions exist. 
 
5.4. Lagrange-Newton Equations 
 
The multi-dimensional system given in Equations (28)-(30) is nonlinear and it is necessary to 
linearize it for the iterative solution. Given the initial solution kX , the solution for the next 
iteration is determined from the multi-dimensional Taylor's expansion by keeping only the linear 
terms 

0XXXX =∆∇+∇=∇ kk

A

k

AA LLL )()()( 2 , (33) 

where the residual term is defined as kkk XXX −=∆ +1 , and obtained from the solution of the 
linear system 

)()(2 k

A

kk

A LL XXX −∇=∆∇ . (34) 

The right hand side matrix, )(2 k

AL X∇ , is called the Hessian of the Lagrangian and the 
right hand side is obtained by evaluating the gradients of the augmented Lagrange function as 
defined in Equations (28)-(30). If the maximum entry of the residual term is greater than a 
tolerance, the solution for the the k-th iteration is updated by kkk XXX ∆+=+1 . 

If the set of equations is arranged and the necessary differentiations are obtained, the 
residual vector kX∆  for the optimization variables is calculated by solving the non-symmetric 
sparse linear system 
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Where, the block matrix form in Equation (35) is the Hessian matrix which includes the 
information for the size and the direction of the decreasing gradient vector in the optimization 
procedure. The block matrices are sparse and stored by an uncompressed pointer storage scheme 
in one-dimensional arrays. Detailed formulations for block matrices can be found in Ovacik [54]. 
 
6. PARAMETRIZATION OF DEVICE GEOMETRY 
 
The task of optimization is to iteratively calculate the new values of the selected optimization 
parameters to modify the actual shape of the device, and therefore to minimize the objective 
function in order to achieve a desired performance. Once the values of the design parameters are 
calculated, the geometry is modified by small increments from its previous shape to a new shape, 
and new iterations are performed until these incremental changes do not significantly effect the 
variation of the objective function. Perhaps, one of the most difficult problems in shape 
optimization problems is to link the geometric optimization parameters to the physical device 
geometry described by the certain physical dimensions and the contours of the device (the 
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material interfaces, such as iron-to-air or copper-to-air). This section will explain the 
parametrization method used in the development of the optimization algorithm. 

 
Figure 3.  Modeling the optimized contour: a) triangular mesh and device contour;              

b) numbering nodes on the device contour and the user defined knots 

As the new values of the geometric parameters are calculated, the device geometry 
changes and thus the new finite element mesh has to be generated for the next iteration. For this 
purpose, an automatic mesh generation algorithm is called whenever the device geometry is 
modified (Subramaniam et al. [23]). This however has certain drawbacks, especially when the 
gradient error due to the discretization is significantly large in regions containing coarse elements 
(Weeber and Hoole [18]). In this case, the convergence behavior of the optimization algorithm is 
significantly influenced by the discretization error due to discretization of the problem domain. 
This may jeopardize obtaining smoothly converging results since spikes on the objective function 
gradient changes the decreasing direction of optimization. The previous work showed that this 
problem can be greatly circumvented by maintaining the same mesh topology during the iterative 
modification of the geometry (Pironneau [4], Haslinger and Neittaanmaki [6], Weeber and Hoole 
[18], and Weeber [17]). The nodal coordinates of the finite element mesh are mapped to the 
geometric parameters. Thus, mesh nodes are smoothly moved from one position to another 
ensuring that the discretization error smoothly changes during this procedure. 

During the iterative modification of the device geometry, four types of mesh nodes are 
considered in terms of restrictions on their moving abilities: 
• Principal nodes: nodes on the device contour which describes the optimized geometry of the 

device. Principal nodes are allowed to move only in the direction of assigned displacements; 
• Associated nodes: mesh nodes which are selected by the user and are critical for the 

geometry modification; they move along with the deflected surface in any direction (unless 
the restrictions are specified by the user) so as to prevent any possible excessive element 
deformation or overlapping in the finite element region; 

• Constrained nodes: nodes which are constrained either horizontally or vertically to avoid 
any possible violation of device's physical geometry. 

• Fixed nodes: nodes which are either far from the deflected surface (not quite influenced by 
the surface deflection) or on the fixed device boundaries which are not allowed to move in 
any direction to avoid any unwanted alteration of the problem geometry. 

 
 
6.1. Optimized Device Contour 
 
To explain how the optimization geometry is modeled, consider the optimized geometry and the 
finite element mesh nodes shown in Figure 3(a). There are SN  nodes on the optimized portion of 
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the device geometry, and some of them are directly linked to the shape optimization parameters 
(the nodal displacements as defined earlier). The displacements directly control the geometry of 
the device while altering the geometry (see Figure 3(b)). The displacements are applied to some 
of the user-selected SK  knots (principal nodes) on the surface. Since the optimized surface may 
be complicated in most problems, these knots are chosen from these nodes, defining the 
optimized geometry. The remaining SKSN −  nodes on the geometry surface are simply the 
associated nodes whose displacement weights are determined from the weights of the knots by 
cubic-spline interpolation. Once the incremental displacements applied to the surface nodes the 
surface is deflected. The total deflection in the p-direction is expressed by 

)(
1

)()( pi

SK

i
pip dQsD ∆∑=∆

=
 (36) 

where s  is the parametric distance on the surface, )(, sQ ip  is the basis of the displacement weight 

associated to the i-th knot on the surface, and )(sDp∆  is the total deflection of the surface after 

applying the incremental nodal displacements pd∆  to the knots. Figure 4 shows the basis 
functions associated with 5 knots selected out of 41 surface nodes on an optimized surface. The 
weights take unit values at the associated knot and vanish on the other knots. For the surface 
nodes, the displacement weights associated to each displacement is calculated from the basis 
functions as 

)()( ipi sQ=β  (37) 

Here, using cubic spline interpolation is found to be a good choice to smooth the 
“jagged” contours on the optimized geometry. As the new nodal displacements are updated the 
knots are moved. Therefore, the independent nodal displacements on the optimized surface are 
linked to the internal mesh nodes in such a way that any displacements of the surface nodes also 
effect the nodes of the sub-region. 
 
6.2. Mesh Coordinates 
 
The finite element matrices and the magnetic flux densities inside the elements are functions of 
some geometric coefficients expressed in terms of the vertex coordinates of elements. If the 
optimization surface is deflected, the elements inside a certain region are deformed. Therefore, the 
element matrices and the magnetic flux densities change with the deflection parameters. This 
section provides an estimated analytical expression between the mesh coordinates and the nodal 
displacement parameters applied to the optimized surface. The relationship between the 
displacements and the coordinates of the finite element mesh is nonlinear since the nodes nearby 
the deflected region move more than the ones far from the surface. The expression suggested is 
used for closed form derivative calculations and is valid for small displacements.  

The described mesh deformation methodology uses a fixed mesh topology during the 
iterative modification of the device geometry. As the new values of nodal displacements are 
calculated, the optimization surface is deflected, and the internal nodes in the user-defined sub-
region move along with the surface nodes. To avoid any overlapping elements, values between 0 
and 1 are assigned to the displacement weights, in such a way that the weights smoothly decrease 
as the distance of the nodes to the deflected surface increase (while the weights of nodes outside 
the sub-region remain zero). The mesh coordinates of the k-th iteration are calculated from the 
coordinates of the initial mesh plus the sum of the products of nodal weights and corresponding 
displacements in that direction:  

k
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where pDF  is the number of nodal displacements in the p-direction, k
pi )(β  is the displacement 

weight of the i-th node. In every iteration the displacement weight, and )( pid∆ , the computed 
increment for the displacement associated with each nodal displacement, is first determined, and 
then the relation between the new mesh nodes and the old mesh nodes is expressed in terms of the 
new coordinates of the new mesh. Therefore, in calculation of the derivative terms in the Hessian 
from Equation (35), the partial derivative of a geometry-dependent function ),( ppf xd  with 

respect to the displacement )( pid  is obtained by the chain-rule differentiation [55]-[57]: 
 

 
Figure 4.  Modeling a five-knot device contour using basis functions: (a)-(e) the cubic-spline 

basis functions of each knot; (f) the initial contour (dashed line) is deflected after applying 
incremental displacements to each knot 
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where the vector px  contains LN  element nodes from px  (i.e., p
LN

p xRx ⊂∈  ), and f  is any 
function which  may be the flux density or the local finite element matrix entry of an element. The 
term )()( / pipj dx ∂∂  can be obtained by directly differentiating Equation (38). 

The nodal displacement weights are unknown for each moving node in the finite 
element region. They should be assigned before each Newton-Raphson iteration is performed. A 
quick way to approximately determine these weights is to define a strategy such that the 
displacement weights assigned on the optimization surface and the restrictions are applied on the 
nodes in the region and the displacement weights on the associated nodes are determined from 
basis functions applied to the nodes on the optimized geometry. The following describes the 
outline of this algorithm. 
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Step 1. Read the coordinates of the user defined frame, the global node numbers of the 
surface nodes which describe the deflected surface, direction of the displacements, 
indices of the selected knots from the surface nodes, the knot indices assigned to the 
displacements and the global node numbers describing the fixed geometries in the 
user defined geometries. 

Step 2. Initialize the displacement weights of the nodes. 
Step 3. Assign unit value of displacement weights to the knots which are associated with the 

displacements, and interpolate the displacement weights for the other surface nodes 
which are not selected as knots. 

Step 4. Iteratively calculate the displacement weights of the other nodes which are neither a 
surface node nor a node describing the fixed geometries. Iterate for the nodal 
displacement weights which do not belong to the displaced surface as well as the 
nodes which belong to the fixed geometries. 

In Step 4, the displacement weights of the associated nodes are determined from the 
displacement weights of its neighboring nodes as illustrated in Figure 5. These values are 
calculated by weighted averages considering the geometric distances of the neighboring nodes  

∑
=

NG

i
pipipo w

1
)()()( ββ , (40) 

where the term )( piw denotes the geometric weight and is calculated by  

∑
=

=

NG

i
pi

pi
piw

1
)(

)(
)(

l

l
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The iterative procedure in Step 4 is continued until a minor change occurs between the 
displacement weights obtained in two successive iterations. 
 

 
Figure 5. Iterative scheme to calculate displacement weights of free-moving nodes from those 

of their neighbors 

 
 
 
6.3. Updating Mesh Coordinates 
 
The robustness and efficiency of numerical shape optimization algorithms strongly depend on the 
geometric mapping of electromagnetic problem (Weeber [17] and Weeber and Hoole [18]). Once 
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the incremental displacements are computed within the Newton-Raphson procedure, the next step 
is to proceed towards the optimal design by applying these changes to the current device 
geometry. In this step, care has to be taken that the new coordinates of the nodes on the optimized 
device contour and the associated nodes in the finite element mesh are properly deflected without 
violating the constraints for the device's physical dimensions as well as without forming any 
overlapping or excessively distorted elements. Then, this deflected mesh structure is used in 
subsequent Newton-Raphson iterations; thereby maintaining a constant mesh topology throughout 
the optimization process to avoid discontinuities in derivatives of both objective function and 
constraints caused by discretization error. Although limited but somewhat quite attractive for 
simple geometries, analytical mapping expressed in terms of nodal displacement weights was 
used earlier by Marrocco and Pironneau [59], and Istfan and Salon [8]. However, satisfying all 
constraints of complex geometries is avoidably difficult for general applications. 

A numerical mapping technique handling more complicated geometries is used in the 
DOPT2D program. The mesh structure is deflected based on structural laws of elasticity using an 
elastic body analogy to the structural subdomain including the optimized device contour and its 
neighborhood where the shape of elements may be critically distorted due to changes in geometric 
design. Since the deflected geometry in the x-y plane does not vary along the z-direction (the axial 
direction of the optimized device), the elasticity problem can be treated as two-dimensional. 
Therefore, the structural deflection is described by displacement vector ),( yxU  with its 
components ),( yxu  and ),( yxv  in the planar coordinate directions x and y, respectively. The 
analysis of the plane stress problem is carried out using the finite element method. The total 
incremental deflection of the optimized contour is applied as boundary conditions to obtain 
displacements of associated nodes in the structural sub-problem region. 

 
Figure 6. Deformation of an elastic element subject to applied point forces 

Because of their nodal compatibility, the first-order triangular elements identical to 
those for the electromagnetic model are also used in the finite element model of the structural 
sub-problem. Consider the triangular element shown in Figure 6. The relation between the applied 
point forces and the resulting displacements at the element vertices is expressed by 

eee
161666 ××× = FUS  (42) 

where eS  is the element stiffness matrix, eU  is the displacement vector and eF  is the nodal point 
source vector including the components in the directions of  and  

{ } T

33221116 vuvuvue =×U ; { } T

33221116 yxyxyx
e ffffffF =×  (43) 

The derivation of the element matrices is not pursued in this paper. For the theory and a 
detailed formulation, the reader should refer to [53] and [61]. 



 
Optimal Design of Nonlinear Magnetic Systems... 

 17

The mesh data including the vertex coordinates of triangular elements and connectivity 
indices are extracted from the global mesh data used for the electromagnetic model. To solve the 
structural sub-problem having sN  nodes, all the element matrices are calculated and then 
assembled to form the global system equations 

11 ××× =
sNsNsNsN FUS . (44) 

Then, the boundary conditions are applied as either the specified point forces or the 
specified displacements. Using the latter is more advantageous because the device descriptive 
parameters regarding the deflected and the constrained geometry are defined as displacements. In 
this manner, the U  vector of displacements is partitioned into the vector of specified 
displacements sU  and the vector of unknown displacements uU  so that the global equations are 
written as 
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where the subscripts u and s represent the nodes of unknown and specified displacements. Thus, 
the state of the structural sub-problem is determined from Equation (45) 

susuuu USUS −= . (46) 
The structural finite element analysis adopted herein is used for geometric mapping 

purposes and no emphasis has been placed on accurate solution of the elasticity problem. It 
should be pointed out that the element stiffness matrix in Equation (45) is derived based on 
variational principles with infinitesimal small displacements, assuming constant strain-
displacement relation inside the elastic element. In actuality, however, the elasticity problem is 
materially nonlinear, i.e., element strain is not constant for large displacements. With this 
assumption, if large displacements are applied, serious numerical errors may occur in solution: 
unrealistically high strain energy is stored in the elements nearby the boundaries of displaced 
surface, causing uneven displacement distribution over the structural domain. This eventually will 
result in very distorted elements after some number of successive geometry modifications. 

To avoid distorted elements, the elasticity problem is linearized by applying a fraction 
of the total deflection (say one part in 1000). Then, the algebraic system in Equation (46) is 
assembled and solved using the boundary condition. Typically, the applied boundary conditions 

sU   include: 

• a fraction of the total deflection of  primary nodes determined from Equation (36); 
• the displacements of the nodes constrained by physical device geometry (displacement 

components in constrained directions are forced to be zero); 
• displacements of the boundary nodes (fixed nodes) of the structural subproblem domain 

(displacement components in both directions are forced to be zero). 
Once Equation (46) is solved for the unknown displacements uU  of the associated 

nodes, the obtained result is divided by this fraction and then applied to the mesh coordinates. 
The DOPT2D program described in this paper utilizes the subroutines of the MODEL 

library (Akin [60]). The size of structural subproblem region is determined by the user based on 
his/her previous experience. It should be kept in mind however that this size should be chosen as 
small as possible to minimize the additional computational cost. 
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7. MODELING NONLINEAR MATERIAL CHARACTERISTICS 
 
Since most devices are designed to operate in saturation, accurately modeling reluctivity 
characteristic of nonlinear ferromagnetic materials plays an important role in synthesis of 
magnetic problems. In most cases, even under normal operating conditions, magnetic devices are 
designed to operate in saturation region. Therefore, considering a linear magnetization curve in 
such devices is unrealistic. Mathematical modeling of such characteristics should be taken care of 
by an appropriate method.  

Magnetic saturation may be understood graphically by examining a curve of magnetic 
flux density B versus magnetic field intensity, H as shown in Figure 7. In general, magnetic 
characteristics of materials are represented by magnetization curves relating the magnetic field 
intensity H, to that of magnetic flux density. These curves of different magnetic materials are 
experimentally determined and tabulated as a set of B-H curves in the manufacturer’s catalogue. 

Forming the finite element stiffness matrix (Equation (13)) requires material reluctivity 
values. The reluctivity characteristics used in the formulations are expressed in terms of the 
square of the magnitude of the flux density in each element as )( 2Bν . During Newton-Raphson 
iterations, the reluctivity and its derivatives are repeatedly evaluated while assembling the local 
element matrices for computing complex calculations of the Jacobian and the Hessian matrices. 
Efficiently computing the reluctivity characteristic and its derivatives is a key element to reduce 
the computational cost.  

 
To guarantee a quadratic, smooth convergence to a unique solution of the optimization 

problem, reluctivity characteristic curves must be at least twice differentiable. There are several 
approximation methods offered in the literature. Using piece-wise cubic polynomials (cubic 
spline method) used by Silvester et al. [62] has become popular in solution of the forward 

  
Figure 7. A Typical B-H characteristic 

curve of a nonlinear magnetic material with 
low- and high-saturation regions 

Figure 8. Variation of the nonlinear relative 
reluctivity in low-saturation (Region I) and high-

saturation (Region II) regions 



 
Optimal Design of Nonlinear Magnetic Systems... 

 19

problem. Since the characteristic curve is represented by cubic polynomials within given 
segments, the derivatives may be oscillatory when large segments are selected. When a large 
number of smaller segments are used to represent the same curve, however, more effort is needed 
to find the associated segment for a given magnetic flux density. Series expansion methods used 
by El-Sherbiny [63] suggest a relatively more accurate, but more expensive-to-evaluate, analytical 
approach using summation of exponential functions. Using a single exponential function 
suggested in Hoole and Hoole [64] is relatively low in cost to evaluate but it can represent the 
curve in a limited range of saturation. 

A typical reluctivity characteristic of a ferromagnetic material is shown in Figure 8. The 
relative reluctivity is expressed as a function of 2B  because it provides an easy differentiation to 
avoid relatively expensive square root operation. The relative reluctivity curve varies very slowly 
in the linear region, and then linearly increases in the moderate saturation level (Region I). In the 
high-saturation level (Region II), however, the linearly increasing curve slightly bends and keeps 
slowly increases to the limit value of oo µν /1= . 

There are several good reasons for using squared values of these independent variables 
B or H, rather than their magnitudes. First, these variables are usually derived from potentials in 
vector component form, so that finding the magnitude involves first finding the squares of the 
components and then extracting the square root of their sum. The relatively expensive square root 
operation is avoided in this way. The second, perhaps more important, is the stability problem: 
working with the square tends to emphasize the behavior of the curve at high flux densities or 
fields where higher precision is usually required. 

The suggested model in this paper can only accurately represent the reluctivity 
characteristic up to a certain saturation level of in the low-saturation region. The fitting values 
begin to deviate from the actual values beyond a certain level of magnetization mB . At this point, 
the reluctivity function 

)exp()(1)( 2

3

2

21

2 BcBccBr −+−=ν  (47) 

is used for representation at high-saturation levels in Region II. Here, the coefficients 1c , 2c , and 

3c   are determined by imposing the continuity conditions of the reluctivity function itself and its 
first and second derivatives at the intersection of the two models 
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where the unknown coefficients 1c , 2c , and 3c  are determined by simultaneously solving 
Equation (48): 
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Therefore, a more realistic model representing the nonlinear reluctivity characteristics 
of iron parts in both low- and  high-saturation cases may be utilized in the solution of the field 
potentials. 
 
8. OUTLINE OF THE DOPT2D PROGRAM 
 
The flow diagram in Figure 9 shows the basic steps of the optimal design process controlled by 
the main program (DOPT2D). The main program cooperates with three modules: the pre-
processor module readily available in the MICROFLUX program; the electromagnetic finite 
element analysis module (FORWARD); the structural finite element analysis module in the 
MODEL program library. The MICROFULX program is used for generating the data including: 
mesh, material, excitation current and material properties for the electromagnetic finite element 
model of the magnetostatic device to be optimized. The data generated are written in a file later 
read by the DOPT2D program. The FORWARD program is used to obtain a finite element 
solution for the magnetic vector potentials in the nonlinear magnetostatic problem: it is called 
prior to the optimization process for providing an initial solution to the vector potentials for the 
initial geometry. The MODEL program is used to solve structural subproblem described in 
Section 6.3 to compute the new coordinates of the moving nodes whenever a new device shape is 
calculated. All routines described herein are implemented using the standard FORTRAN-77 
language. 

The outline of the overall optimization process is as follows. The necessary data files 
are read from the DOPT2D program. These include the mesh coordinates, specified flux densities, 
their specified directions and the material properties (either linear or nonlinear). The preliminary 
computations are then carried out. In this step, element connectivity indices including the indices 
of neighboring elements and nodes are determined and stored in arrays. The parameters for 
nonlinear saturation characteristics of nonlinear materials in low- and high-saturation regions are 
computed. These parameters are later used in direct differentiation of the element matrices in 
forming the Lagrange-Newton equations. 

In the nonlinear optimization process, the augmented Lagrange function is linearized 
and to obtain the system of equations to calculate the update of unknown variables including the 
design parameters, vector potentials and the Lagrange multipliers for the equality constraints (the 
field equations). Once the updates for the unknown displacements are computed, they are passed 
to the MODEL program to obtain new coordinates of the mesh nodes of the finite element model. 
The nonlinearity of the field equations are determined calculating the maximum residual of the 
global field equations maxR . For severely saturated magnetostatic field, the computed updates for 
the vector potentials are not projected correctly using the updates calculated by the Newton-
Raphson process. If the nonlinearity is severe (i.e., RR ε>max ), the geometry is updated and then 
the global finite element equations are solved using the FORWARD problem. These computed 
vector potentials are used to update the vector potentials. Once the vector potentials are updated 
for the new geometry, the flux densities at the test points are evaluated and the least-squares error 
is computed for the next iteration.  
 
9. RESULTS AND DISCUSSUIONS 
 
This section is concerned with the optimal design of synchronous machinery by using the 
DOPT2D program developed and implemented in this paper. The design objective used for the 
problems arises from the requirement of the air-gap flux density to vary sinusoidally along outer 
periphery of the airgap region. The objective function is minimized, in the sense of least-squares, 
with respect to the most sensitive geometric parameters subject to geometric constrains specified. 
The case studies undertaken for unsaturated and saturated salient-pole, and saturated round-rotor 
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synchronous generators will be presented to demonstrate that the DOPT2D program can be used 
as an optimal design tool for minimizing space harmonics in the air-gap flux waveforms. 
 

 
Figure 9. Flow diagram showing the basic steps of optimal design procedure 

 
9.1. Salient-Pole Synchronous Generator  
 
The full pole-pitch of a salient-pole machine in Figure 10 (a), including the stator, rotor, field-
winding and air-gap regions, is used to demonstrate optimization of the pole face of salient-pole 
synchronous generators. The magnetic-circuit model used in this study is adopted from the 
previous work presented by Weeber [17], who originally described this model for testing 
constrained optimization algorithms. The geometric dimensions and the design parameters 
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defined in one-half of the pole pitch of a salient-pole synchronous generator are shown in Figure 
10(b). The design of the pole geometry in this figure is described by six geometric dimensions: 

pτ  is one-half of the pole pitch; pw  is one-half of the pole width; 0δ  is the air gap at the middle 

of the pole; tδ   is the air-gap size at the pole tip; th  is the height of the pole tip; wδ  is the gap 
between the pole and the field winding. 
Design Objective and Problem Definition. The design objective of the optimal design problem 
is to synthesize the pole geometry to achieve a sinusoidally-distributed flux density along the air-
gap line A-B in Figure 10 (b). In constructing the data for the optimization problem, before 
computing the geometric design parameters, similar procedures explained in [54] are carried out 
to construct the optimization problem. First, the problem domain is discretized using the 
triangular mesh generator of the MICROFLUX finite element analysis program. The first-order, 
triangular mesh including 622 elements and 340 nodes shown in Figure 11 is used for the finite 
element model. Then, six nodal displacements assigned to some of the 24 mesh nodes on pole-
face contour for parametrization of the optimization geometry. The directions of the displacement 
parameters and the boundary conditions for the magnetic vector potential are shown in Figure 12. 
Finally, the y-component of magnetic field density, yB , is specified at 31 points located in 

regular intervals on the line A-B, and calculated by using the expression )2/sin(0 py xBB τπ= . 

 
Figure 10. Magnetic-circuit model of a salient-pole synchronous generator: (a) the full pole-
pitch geometry including the stator, rotor, air, pole and field-winding regions; (b) the solution 

domain and geometric dimensions of one-half of the pole pitch 
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Selection of Case Studies. The case studies considered herein are selected primarily based on the 
foregoing discussions made on the effect of saturation in [54]. In retrospect, the increasing flux 
leakage due to the increasing level of saturation in the nonlinear characteristics is critical to the 
performance of the optimization algorithm. These cases must be investigated to determine the 
limits of the optimization algorithm.  

Interpretation of the saturated magnetic-circuit model in the sense of leakage flux is 
worthwhile considering when identifying the most critical conditions. For the problem in Figure 
10, the air-gap flux density 0B  mainly depends on the air-gap size 0δ  and the Ampere-turns NI  
in the field windings. If, for example, saturation is not included in the magnetic-circuit model, the 
air-gap flux density is directly proportional to the Ampere-turns, and inversely proportional to the 
airgap size 0δ  as expressed by 000 / δµ≈ NIB  (the mmf drops in the iron regions are neglected 
by assuming that iron is much more permeable than air). It is therefore obvious that a constant  
ratio of  is maintained by the ratio 0/ δNI  in the form of any combination of two variables NI  

and 0δ . 
 

 
 

Figure 11. Initial triangulation of the 
problem geometry in Figure 10. The finite 
element mesh consists of 622 first-order 

triangular elements and 340 nodes 

Figure 12. Definition of the field and 
optimization parameters applied to the mesh 
model in Figure 11. Dirichlet and Neumann 
boundary conditions, and the user defined 

rectangular region (the light-grey region) of 
moving mesh including 158 nodes 

This relationship, on the other hand, does not apply to the saturated problems because 
increasing saturation level increases the magnitude of the leakage flux through the air, yielding a 
nonlinear relationship between the ratios 00 / δB  and 0/ δNI . For heavily-saturated cases, 

varying the ratio 0/ δNI  has a very little effect on 0B . Therefore, increasing flux leakage 
decreases the sensitivity of the objective function to the critical sizes of iron parts, eventually 
leading to a very ill-conditioned optimization problem for which obtaining a stable numerical 
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solution is very difficult, sometimes even impossible without employing effective regularization 
techniques. Based on these observations, the following cases are worth considering: 

• an unsaturated generator (Case A) to yield =0B 1.0 T in the air gap; 

• a moderately-saturated generator (Case B) to yield =0B 0.75 T in the air gap; 

• an heavily-saturated generator (Case C)  to yield =0B 1.0 T in the air gap, which is a typical 
operating condition expected for a high-performance generator. 

Using the geometry and field parameters described in Figure 12, the DOPT2D program 
is used to optimize the pole shape of the synchronous generator for three different saturation 
levels which have been found to have significant influence on the performance of the 
optimization procedure. The results obtained for these cases will be presented and discussed 
within the text as follows. 

Unsaturated Generator (Case A). Since air-gap magnetic flux density depends on the the 
excitation current, a proper current density value should be determined. The value of 4.0 A/mm2 
was found to be an appropriate excitation current value which may yield a starting point which is 
not significantly far from the optimal solution. This current value approximately determined on 
the trial-and-error basis by evaluating the objective function for different current density values. 
This current density value will produce an air-gap flux density whose peak is sufficiently close to 
the specified magnitude =0B 1.0 T. 

Table 1. Initial and final values of the optimization variables for the unsaturated, salient-pole 
generator (Case A) to obtain sinusoidal flux-density distribution with magnitude of 1.0 T. 

Iter. Φ  ]mm[Ld
 

]mm[d  ]mm[Ud
 

µ  g  
pr  

0 0.3921818 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 

0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.3845E-2 
0.3691E-2 
0.3691E-2 
0.3691E-2 
0.3691E-2 
0.3691E-2 

-0.2500 
-0.2400 
-0.2400 
-0.2400 
-0.2400 
-0.2400 

0.5391E-4 

20 0.0363778 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

-0.1662E-2 
-0.1500E-1 
 0.7726E-3 
  0.1155E-1 
 0.1985E-1 
 0.2337E-1 

0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.000E+0 
-0.155E-2 
0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 

-0.2431 
 0.0000 
-0.2428 
-0.2328 
-0.1618 
-0.1150 

0.1552E+2 

 
Computations were carried out to 20 iterations for a relatively simple case without 

allowing any saturation in the stator and rotor iron. The optimization variables for the initial and 
the optimal geometry obtained after the 20th iteration are tabulated in Table 1. Note that all 
displacements computed remained in the feasible domain, and the inequality constraint, 2g , (for 

the second displacement parameter determining the pole width, pw ) became active at the optimal 
solution. This substantiates the robustness of the augmented Lagrange multiplier method, forcing 
the geometric variables to satisfy the inequality constraints during the optimization process.  

The initial, and the computed pole geometry obtained after the 20th iteration are shown 
in Figure 13. Figure 13(a) shows the initial and the deflected mesh for the optimal geometry, 
respectively. The flux lines computed for the initial and the optimal geometries are shown in 
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Figure 13 (b). Substantial improvements in the waveform of magnetic flux distribution along the 
air-gap line A-B for the optimized pole geometry are obtained. It is clearly seen in Figure 14 that 
the obtained flux density for the new design perfectly matches to the ideal sine-wave distribution 
at 31 points when compared to that for the initial geometry.  

 

 
Figure 13. Computational results for the parametrization with 6 variables (in Figure 12) 

applied to the unsaturated, salient-pole generator to obtain a sinusoidal flux-density 
distribution with the magnitude of 1.0 T: (a) deflected mesh geometry; (b) flux lines for the 

initial and the optimized pole shapes 
 

A more quantitative evaluation of these computational results is made by comparing the 
FFT analyses of the air-gap flux waveforms given in Figure 15. The harmonic ratios computed 
from Figure 15 are tabulated in Table 2 for numerical comparisons. The improvements in 
minimizing the harmonics are substantial. The major reduction is obtained for the 3rd harmonic: 
the 3rd harmonic ratio (where, harmonic ratio is defined as the ratio of the corresponding 
harmonic to the fundamental component) is reduced from 12% to 1.37% after the optimization. 
Relatively low but noticeable reductions are also obtained for the 5th and 7th harmonic ratios: 
they are reduced from approximately 4.64% to 1.74%, and from 4.78% to 1.52%, respectively. A 
slight increase in the 9th harmonic is obtained: from 1.31% to 1.59%. 

Table 2. Comparison of the harmonic ratios of the initial and the optimal design (using the FFT 
analysis for the unsaturated, salient-pole generator in Case A) 

Harmonic Ratio 
[%] 

3rd 5th 7th 9th 11th 

Initial 12.00 4.64 4.78 1.31 0.53 
Optimal 1.37 1.74 1.52 1.59 0.04 
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Figure 14. Variation of  the y-component of 
the magnetic flux density along the air-gap 

line A-B for results in Figure 13(b) 

Figure 15. FFT analysis showing the space-
harmonics of the air-gap magnetic flux density 

distribution in Figure 14 
 
Moderately-Saturated Generator (Case B). The solution of the optimization problem related to 
the unsaturated problem in Case A was stably converged to the optimal solution yielding efficient 
and accurate results. This case involves the solution of the same problem including the effects of 
saturation in the finite element model. To obtain a moderate saturation level, the applied winding 
current density is proportionally decreased to 3.0 A/mm2 for the magnitude of the desired 
sinusoidal flux density =0B 0.75 T. Then, the computations were carried out to 15 iterations. The 
initial and the final values of the optimization variables for this case are tabulated in Table 3. Note 
that the normalized least squares error, Φ , is reduced from 0.4000451 to 0.0425484, showing 
that convergence is achieved properly in even saturated is allowed in the stator and rotor regions. 
 

Table 3. Initial and final values of the optimization variables for the moderately-saturated, 
salient-pole generator (Case B) to obtain sinusoidal flux-density distribution with magnitude 

of 0.75 T 
Iter. Φ  ]mm[Ld

 
]mm[d  ]mm[Ud

 

µ  g  
pr  

0 0.4000451 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 

0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.4000E-2 
0.3845E-2 
0.3845E-2 
0.3845E-2 
0.3845E-2 
0.3845E-2 

-0.2500 
-0.2400 
-0.2400 
-0.2400 
-0.2400 
-0.2400 

0.5609E-3 

15 0.0425484 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

-0.1361E-2 
-0.1500E-1 
 0.5573E-2 
 0.1689E-1 
 0.2393E-1 
 0.2684E-1 

0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.000E+0 
-0.194E-2 
0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 

-0.2454 
 0.0000 
-0.2499 
-0.1935 
-0.1067 
-0.0592 

0.3281E+1 
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Examining the mesh and the field potential lines for the initial design and the optimal 
design shown in Figure 16 indicates that the obtained geometry and the flux distribution did not 
significantly differ from the unsaturated problem. For the optimal pole face geometry obtained 
herein, the flux distribution for the moderately saturated case is almost perfectly approximated to 
a sine-distribution as shown in Figure 17. The FFT analysis results for this case are shown in 
Figure 18. The computed harmonic ratios are given in Table 4. The improvements for the 
harmonic ratios obtained for the moderate level of saturations are approximately in the same order 
but slightly lower than those obtained for the unsaturated case. 

 
Table 4. Comparison of the harmonic ratios of the initial and the optimal design (using the 

FFT analysis for the moderately-saturated, salient-pole generator in Case B). 

Harmonic Ratio 
[%] 

3rd 5th 7th 9th 11th 

Initial 11.61 4.53 4.72 1.33 0.55 
Optimal 1.83 2.22 2.00 1.93 0.16 

 
 

 
Figure 16. Computational results for the parametrization with 6 variables (in Figure 12) 

applied to the moderately-saturated, salient-pole generator to obtain a sinusoidal flux-density 
distribution with the magnitude of 0.75 T: (a) deflected mesh geometry; (b) flux lines for the 

initial and the optimized pole shapes 
 

Heavily-Saturated Generator (Case C). Recognizing the fact that moderate saturation in iron 
regions affect the optimization results slightly, the optimization algorithm needs to be tested for 
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the heavy saturation. In this case,  the current density value for is increased to 10.0 A/mm2 to 
properly compensate the flux leakage through the air region, and the magnitude of the desired 
sinusoidal flux distribution is increased to =0B 1.0 T. The computations were carried out to 20 
iterations. The optimization variables for the initial and the final geometry are tabulated in Table 
5. 

 The mesh and the flux lines for the initial and the optimal geometry are shown in 
Figure 19(a) and (b), respectively. Figure 20 shows the comparison of flux distribution in the air-
gap flux distribution before and after the optimization. Note in this example that the initial flux 
distribution is not flat as obtained in the previous case for =0B 0.75 T (see Figure 17). The FFT 
analysis of the flux distribution in Figure 21 shows that a very little improvement is achieved in 
the third and the higher harmonics (compare Figure 18 for the moderately saturated 0.75 T case 
and Figure 15 for the unsaturated case of 1.0 T). The computed harmonic ratios for this case are 
given in Table 6. It appears that the 3rd, 5th and 9th harmonics in the optimized air-gap flux 
waveform are increased relative to the initial design. Very little improvement is obtained in the 
7th and 11th harmonic ratios. It is interesting to see that even if the normalized least-squares error 
was reduced more than 50% compared to the initial design, the overall improvement in the flux 
densities is very little. 

 
Table 5. Initial and final values of the optimization variables for the heavily-saturated, 

salient-pole generator (Case B) to obtain sinusoidal flux-density distribution with       
magnitude of 1.0 T 

Iter. Φ  ]mm[Ld
 

]mm[d  ]mm[Ud
 

µ  g  
pr  

0 0.1328825 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 

 0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.2207E-2 
0.2119E-2 
0.2119E-2 
0.2119E-2 
0.2119E-2 
0.2119E-2 

-0.2500 
-0.2400 
-0.2400 
-0.2400 
-0.2400 
-0.2400 

0.3095E-4 

20 0.0535845 -0.0100 
-0.0150 
-0.0200 
-0.0200 
-0.0200 
-0.0200 

-0.3648E-3 
-0.1500E-1 
 0.8937E-2 
 0.1970E-1 
 0.2617E-1 
 0.2846E-1 

0.0100 
0.0100 
0.0300 
0.0300 
0.0300 
0.0300 

0.000E+0 
-0.191E-2 
0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 

-0.2497 
 0.0000 
-0.2438 
-0.1636 
-0.0707 
-0.0298 

0.8911E+1 

 
 

Table 6. Comparison of the harmonic ratios of the initial and the optimal design (using the FFT 
analysis for the heavily-saturated, salient-pole generator in Case C) 

Harmonic Ratio 
[%] 

3rd 5th 7th 9th 11th 

Initial 1.57 1.62 3.72 2.08 0.88 
Optimal 2.53 2.74 2.54 2.29 0.28 
 

Comparison and Evaluation of Results. The numerical results of the case studies are concerned 
with the optimal pole shape design of synchronous generator for three different levels of 
saturation in iron materials resulted in qualitatively similar but quantitatively varying geometric 
dimensions. The summary of the geometric dimensions of the initial and optimized pole piece 
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design are listed for all three cases in Table 7. The following conclusions may be drawn from 
these results with respect to the increase in saturation: 
• The air gap 0δ  for the optimized pole shape decreased as the saturation level is increased 

because of the decreasing permeance as the iron saturates.  
• The height of the pole tip ph  increased with the increasing saturation in iron, leading to larger 

cross-sectional area of the pole piece as the saturation level is increased. 
• In all optimization, the ratio of ppw τ/  remained the same because one half of the pole width 

pτ  could not exceed the geometric constraints imposed in the optimization problem. It is 
expected however that relaxation of this constraint to a broader range may result in a further 
improvement in the design. 

 

 
 

Figure 17. Variation of  the y-component of 
the magnetic flux density along the air-gap 

line A-B for the results in Figure 16(b) 

Figure 18. FFT analysis showing the space-
harmonics of the air-gap magnetic flux density 

distribution in Figure 17 
 

Furthermore, the prescribed design criterion was satisfied differently for each case. Of 
the cases investigated, the best performance in terms of the design criterion and the stability of the 
converged iterative solution was obtained for the unsaturated generator (Case A). The 
optimization for the moderate saturation level in Case B resulted in a reasonably good design and 
performance; the obtained results are quite close to those of the unsaturated generator. While the 
the maximum value of the harmonic ratios is approximately 12% for both cases. This maximum 
value after the optimization the maximum is as much as 1.74% for the unsaturated generator and 
2.22% for the moderately-saturated generator. 

On the contrary to the results obtained for Cases A and B, optimization with heavy 
saturation in iron (Case C) did not reduce all the harmonic ratios even though the winding current 
was increased by a factor of 2.5 (relative to that in the unsaturated case) to compensate the 
leakage flux. 
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Figure 19. Computational results for the parametrization with 6 variables (in Figure 1.15) 
applied to the heavily-saturated, salient-pole generator to obtain a sinusoidal flux-density 

distribution with the magnitude of 1.0 T: (a) deflected mesh geometry; (b) flux lines for the 
initial and the optimized pole shapes 

 

 
 

Figure 20. Variation of  the y-component of 
the magnetic flux density along the air-gap 

line A-B for the results in Figure 19 

Figure 21. FFT analysis showing the space-
harmonics of the air-gap magnetic flux density 

distribution in Figure 20 
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Table 7. Summary of the optimal dimensions of the salient-pole, synchronous generator       

for three different test cases  

Case  ]mm[0δ  ]mm[tδ  ]mm[wδ  ]mm[th  [%]/ ppw τ  

Initial 50.00 50.00 30.00 50.00 66.67 A Optimal 26.63 49.23 23.34 50.77 71.67 
Initial 50.00 50.00 30.00 50.00 66.67 B Optimal 23.16 44.44 23.64 55.57 71.67 
Initial 50.00 50.00 30.00 50.00 66.67 C Optimal 21.54 41.06 24.64 58.94 71.67 

 
9.2. ROUND-ROTOR GENERATOR  
 
The study presented in this section is concerned with the design optimization of a round-rotor 
generator. The magnetic-circuit model including stator, rotor, air and rotor slot regions described 
in the full pole-pitch of the round-rotor generator is shown in Figure 22. The results presented 
herein are used to demonstrate the basic principles of the methodologies developed in this study; 
the geometric details, such as slot geometry and rotor curvature are not included in the model. 
Handling more complicated geometries, however, is possible by rigorously formulating the 
parametrization and the finite element models for the magnetic field and the structural sub-
problem.  

Considering the symmetry conditions about the polar and interpolar axes, the 
computations are carried out in the half pole-pitch geometry. Figure 23 shows the geometry and 
design dimensions on one-half of the pole pitch. The seven design dimension describing the 
design are given: pτ  is one-half of the pole pitch; iδ  (i=1,..,5) is the depth of the corresponding 

slot number i; 1t  is the distance from the left side of the first slot to the polar axis; 2t  is the 
distance between the first and the second slots. 

 

 
Figure 22. Full pole-pitch geometry of a round-rotor synchronous generator 
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Figure 23. Geometry and dimensions of the 
part of a round-rotor synchronous machine 

Figure 24. Initial triangulation of the problem 
domain in Figure 23. The finite element mesh 

includes 1124 first-order elements and 605 nodes 

Design Objective and Problem Definition. The task of optimally designing the round-rotor 
generator is to determine the geometric dimensions to minimize the space harmonics in the y-
component of the flux density along the air-gap line A-B shown in Figure 23. The first step for 
constructing the optimal design problem is to discretize the problem domain in Figure 23. The 
triangular mesh of 1124 first-order elements and 605 nodes is shown in Figure 24. The geometry 
of the rotor slots and location of the first slot on the rotor surface is parametrically defined using 
six displacements properly assigned to some of the 107 nodes on the rotor surface. Figure 25 
shows the assignment of these displacements, the boundary conditions and the boundaries of the 
structural subproblem including 424 nodes. When choosing the number and the directions of the 
displacements, maximum sensitivity and minimum computational cost are expected to have by 
selecting the optimization parameters as follows: 

• the displacement 1d  is to vary the slot location by moving in the horizontal direction (left or 
right) so that the flux waveform is modified; 

• the displacements 2d  through 6d  are to vary the depth of each slot to control the Ampere-
turns determining the magnitude of the flux waveform on line A-B. 

Therefore, minimum number of degrees of freedom is provided for altering both the 
magnitude and the shape of the air-gap flux waveform. 

The sine-wave flux distribution is specified at 51 points (approximately one point in 
each element attaching the line A-B shown by a dashed line in Figure 25) selected in regular 
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intervals on the air-gap line A-B. The expression )2/sin(0 py xBB τπ=  is used to evaluate the 

flux densities at 51 points for =0B 1.0 T. 

 

  
Figure 25. Definition of the field and 

optimization parameters used for the mesh 
shown in Figure 23. Dirichlet and Neumann 

boundary conditions and the user defined 
rectangular region of moving mesh 

including 424 nodes 

Figure 26. Deflected mesh geometry 

 
 

Table 8.  Initial and final values of the optimization variables for the saturated, round-rotor 
generator to obtain sinusoidal flux-density distribution with magnitude of 1.0 T 

Iter. Φ  ]mm[Ld
 

]mm[d  ]mm[Ud
 

µ  g  
pr  

0 0.0525691 -0.0250 
-0.0250 
-0.0400 
-0.0400 
-0.0400 
-0.0400 

0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 
0.0000E+0 

0.0250 
0.0250 
0.0400 
0.0400 
0.0400 
0.0400 

0.6909E-3 
0.6909E-3 
0.6909E-3 
0.6909E-3 
0.6909E-3 
0.6909E-3 

-0.2500 
-0.2500 
-0.2500 
-0.2500 
-0.2500 
-0.2500 

0.1036E-2 

9 0.0220618 -0.0250 
-0.0250 
-0.0400 
-0.0400 
-0.0400 
-0.0400 

0.1790E-1 
0.2474E-1 
0.2509E-1 
0.4723E-2 

-0.3536E-1 
-0.4641E-2 

0.0250 
0.0250 
0.0400 
0.0400 
0.0400 
0.0400 

0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 
0.000E+0 

-0.1219 
-0.0052 
-0.1517 
-0.2465 
-0.0546 
-0.2466 

0.6156E-1 
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Numerical Results. A converged solution for the six displacements to minimize the objective 
function for the saturated round-rotor generator was obtained after 9 iterations. The initial and the 
final values of the optimization variables are listed in Table 8. The finite element mesh is properly 
deflected during the iterative modification of the generator geometry. The deflected mesh for the 
final geometry is shown in Figure 26. The flux lines for the initial and the optimal geometries are 
shown in Figure 27(a) and (b), respectively. 
 

 
Figure 27. Flux lines for: (a) the initial geometry; (b) the optimized geometry 

 

 
 

Figure 28. Variation of  the y-component of 
the magnetic flux density along the air-gap 

line A-B for the results in Figure 27 

Figure 29. FFT analysis showing the space-
harmonics of the air-gap magnetic flux density 

distribution in Figure 28 
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Table 9. Comparison of the harmonic ratios of the initial and the optimal design (using the FFT 
analysis for the saturated, round-rotor generator in Figure 29) 

Harmonic Ratio 
[%] 

3rd 5th 7th 9th 11th 

Initial 4.27 0.10 0.33 0.88 0.90 
Optimal 0.64 0.15 0.71 0.28 0.34 

 
The optimal design dimensions computed by using the six displacements are given in 

Table 10. Examining the optimal geometry in Figure 27(b) and the dimensions in Table 10 
indicate that the design objective is best satisfied by automatically changing the slot sizes, and the 
moving the first slot in the horizontal direction to improve the top portion of the initial waveform 
to match the sine-distribution. More geometric parameters can be introduced into the problem at 
the expense of the computational cost and modeling the very complex structured sub-problem. 
The difficulty encountered in the previously presented results for the heavily-saturated salient-
pole generator was not experienced in this problem because the air-gap flux is mainly determined 
by the sized of the slots instead of the air-gap size. 

 
Table 10. Geometric dimensions of the round-rotor generator for the initial and the optimized 

design 

Design 
Parameters ]mm[1t  ]mm[2t  ]mm[1δ  ]mm[2δ  ]mm[3δ  ]mm[4δ  ]mm[5δ  

Initial 56.61 56.61 76.20 152.40 152.40 152.40 152.40 
Optimal 74.51 38.71 51.46 127.31 147.68 187.76 157.04 

 
 
10. CONCLUSIONS 
 
This paper has summarized the effort for analytical and numerical developments in formulating a 
second-order, constrained optimization algorithm using the augmented Lagrange multipliers 
method (ALMM). The basic principles of the method are described in detail. The optimization 
algorithm implemented in the design optimization program, DOPT2D, is specifically developed 
for optimal shape design of two-dimensional magnetostatic devices accounting for the saturation 
characteristics of iron materials. This optimization tool minimizes the least-squares objective 
function subject to global field equations (equality constraints), and the geometric constraints 
specified by design standards or physical device dimensions (inequality constraints) to compute 
optimal values of geometric parameters of a device. The DOPT2D program developed in this 
study is capable of determining optimal geometry of selected material interfaces, such as iron-to-
air material interface or geometric dimensions and location of excitation windings, to approximate 
a desired field distribution prescribed at certain coordinates. The augmented Lagrange multipliers 
method (ALMM) is partially applied to the inequality constraints to ensure that the computed 
geometric design parameters stay in the feasible domain when the optimization procedure is 
completed. 

Demonstrated results were devoted to optimal design of synchronous machinery. Both 
qualitative and quantitative comparisons of the case studies involving optimal pole design in a 
salient-pole synchronous generator for three different saturation levels yielded different levels of 
optimal design objective. The conclusions drawn from these results are: 
• The performance of the iterative solution of the nonlinear constrained optimization problem 

also showed different performances for all the cases. 
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• Computations carried out for saturated and unsaturated-salient pole generator case showed that 
the leakage flux play an essential role in convergence of iterative procedures. The results 
obtained for unsaturated and moderately-saturated salient-pole generator cases showed almost 
identical pole shapes. Space harmonics of the air-gap flux distribution was significantly 
eliminated yielding almost perfectly sinusoidal air-gap flux distribution in the y-direction.  

• The results for the heavily-saturated salient-pole generator optimization, on the other hand, did 
not yield results as good as those for unsaturated and moderately-saturated generator cases.  

• Application to a saturated round-rotor synchronous generator demonstrated the following 
capabilities: 

• The computational experiments performed on a saturated round-rotor synchronous generator 
case did not have the same difficulties previously experienced in the heavily-saturated, salient-
pole generator case since the iron boundaries were not modified. 

• Considering overall experiments the following conclusions can be drawn for the DOPT2D 
program: 

• The overall results showed that the DOPT2D program is capable of modifying iron-to-air and 
copper-to-air or copper-to-iron boundaries. 

• When modifying heavily-saturated iron-to-air boundaries, care has to be taken. To achieve a 
reliably converging results, the residual error of the nonlinear field equations is checked after a 
significant geometric modification. Field analysis should be performed externally to update the 
field potential if it is necessary. 

• Computational requirements can grow with the number of nodes in the mesh model, the 
number of nodes in the substructural problem and the number of design parameters. 
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